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Abstract SpectrumEstimation has emerged as themajor bottleneck for the develop-
ment of advanced technologies (IoT and 5G) that demand for a unperturbed continu-
ous availability of the spectrum resources. Opportunistic dynamic access of spectrum
by unlicensed users when the licensed user is not using the resources is seen as a
solution to the pressing issue of spectrum scarcity. The idea proposed for spectrum
estimation is to model the Cognitive Radio (CR) network as Hidden Markov Model
(HMM). The spectral estimation is done once in a frame. 100 such frames with 3000
slots each is considered for performing the experiment, assuming that the PU activity
is known for a fraction of 3.33% of the slots i.e., for 100 slots. The parameters of
the HMM are estimated by maximizing the generating probability of the sequence
using the Particle Swarm Optimization (PSO). For the typical values of the network
parameters, the experiments are performed and the results are presented. A novel
sum squared error minimization based “Empirical Match” algorithm is proposed for
an improved latent sequence estimation.
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1 Introduction

A fast pace development of wireless technologies such as Internet Of Things and the
emerging 5G technology demand for a continuous availability of spectrum resources
for all its users. However, the major bottleneck is the spectrum scarcity problem that
might be a consequence of either poor throughput of the network due to congestion
or lack of available spectrum resources [5, 8, 9]. The Cognitive Radio technology
aims at improving the spectrum utilization and network throughput by enabling the
unlicensed users (Secondary Users (SU)) to access the resources of the licensed user
(Primary User (PU)) whenever the PU is not utilizing the allocated resources. For an
extensive utilization of the resources, the SUmust learn the behavior or trend of how
the PU is utilizing the resources. Physical spectrum sensing based on energy detection
is performed in-order to know the presence of licensed user. However owing to the
erroneous channel conditions due to external noise and interference from other users,
it is highly possible that the results of physical spectrum sensing are not reliable. The
following cases may arise:

1. If the PU is idle, and the physical spectrum sensing decides that the PU is active -
False alarm, then it will lead to under-utilization of the spectrum resources, since
neither the PU is using the channel nor the SU can make use of the free channel
owing to false detection. This will have an adverse impact on the throughput and
efficiency of the channel.

2. If the PU is busy and the SU senses the channel to be free - Miss detection,
then the PU and the SU will simultaneously attempt to transmit data i.e., channel
contention thereby resulting in congestion.

Hence, the SU cannot rely on the outcome of physical spectrum sensing. A more
accurate estimate of PU activity is needed for opportunistic spectrum access by the
SU to utilize the spectrum resources without leading to congestion in network and
also increasing the network throughput.

2 Problem Formulation

The SU performs the physical spectrum sensing at sensing slots that are uniformly
distributed over time. Let the PU spectrum access be represented by the random
vector S. The outcome of the random vector in each sensing slot can be either 0
(PU is inactive) or 1 (PU is active). The SU performs spectrum sensing based on
energy detection. Let V be a random vector that denotes the outcome of physical
spectrum sensing, the outcome of the random vector will be a binary sequence.
Under ideal conditions the outcome V is same as S. However, in real time the result
of the physical spectrum sensing and the actual PU activity are seldom in coherence.
Hence, the problem under consideration is to estimate the PU activity as accurately
as possible, given the SU observation sequence. The solution to this problem is to
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model the CR network as HMM [1] and extract the hidden network parameters which
will further aid in estimating the PU activity more precisely.

2.1 Hidden Markov Model

The Hidden Markov Models (HMM) belongs to the class of mixture models, where
the latent variables are discrete and belong to a finite set. The HMM consists of two
stochastic processes of which one is hidden - latent. The other stochastic process is
a result of the hidden process and is referred to as observation sequence. The hidden
process in case of HMM is a markov process. A markov process of first order can
be defined as the one in which the next state of the process depends only on the
current state of the process and is independent of all the past history of the process.
As mentioned earlier, the latent states of the HMM form the markov chain of first
order [2, 3].

The latent state of the HMM at nth instant can be represented by a variable Sn that
takes a value from a discrete set of k values and yields an observation Vn , where, k
is the number of distinct states involved in the markov process. The latent process of
the HMM is characterized with the transition probability defined as pi j = P(sn+1 =
j/sn = i), where i, j ∈ k. The observation process is a result of the hidden latent
process that is generated as a result of emission of observations from the latent states.
The emission of the observations depends on the emission probabilities defined as
hi j = P(vn = j/sn = i). Each possible value of latent state is associated with a
prior probability πk = P(s1 = k), such that,

∑
k πk = 1. The transition probabilities

and emission probabilities of a two state HMM can be represented in the form of
tables as in Fig. 1. In the Fig. 1, Si and Sa are the two distinct states in the markov
process, where subscript ′i ′ and ′a′ indicate inactive and active in accordance with
the application in CR network. Similarly, Vi and Va implies the observation result,
where, i and a hold the same meaning.

A HMM can be completely described by a model defined by λ = [π A O],
where, A is a matrix representing all possible transition probabilities between dif-
ferent states and O represents all the possible emission probabilities.

Fig. 1 a Transition probability table. b Observation probability table



278 Y. Vineetha et al.

Regarding theproblemof spectrumestimation, the only information availablewith
the SU is the erroneous observation sequence V . The HMM model corresponding
to the CR Spectrum estimation problem is as shown in Fig. 2. Using V , the HMM
model (i.e., λ = [π A O]) is to be estimated. Using the estimated HMM model
parameters, further, the PU activity sequence is to be estimated. Hence, the Spectrum
Estimation problem in hand can be broadly split into two tasks, where the solution
of first problem paves way to solve the second problem.

1. Task 1 To estimate the model λ
2. Task 2 To estimate the hidden PU activity S.

A generalized flow chart illustrating the steps employed for solving spectrum
estimation problem is as in Fig. 3.

Fig. 2 Hidden Markov model of SU in cognitive radio network

Fig. 3 Generalized steps involved in spectrum estimation problem
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3 PSO Based Estimation of Hidden Parameters of Network
- Task 1

The first problem associated with the spectrum estimation is to estimate the hidden
parameters of the network (CRmodeled asHMM). This can be solved conventionally
by using Expectation Maximization (EM) algorithm. The algorithm aims at finding
the solution that maximizes the probability of generation of model.

3.1 Expectation Maximization

The EM algorithm [4] is an iterative algorithm that tries to adjust the model parame-
ters such that the probability of generation of the random vector V , given the model
parameters increases. It provides the Maximum likelihood solution to the problem.
The generation probability of the model can be described by (1)

G = (π0)
1−s1(1 − π0)

s1
i=N−1∏

i=1

psi si+1hsi+1vi+1 (1)

The EM algorithm can be summarized as follows

1. Initialize the model with random parameters
2. Run EM algorithm (Refer Appendix) till convergence (200 iterations)
3. Repeat steps 1 and 2 for 10 times
4. From output in step 3, choose the best solution (model parameters that give

maximum probability of generation) as λest .

However, there are a few drawbacks associated with the EM algorithm

1. The EM algorithm takes large time for convergence, i.e., slow convergence
2. The solution obtained using EM depends on the initialization, a bad initialization

will result in convergence of EM algorithm to a local maxima.

3.2 PSO Based Proposed Technique

The use of CI technique - Particle Swarm Optimization (PSO) can be used to over-
come the disadvantages of conventional EM algorithm. Particle SwarmOptimization
(PSO) is a biologically inspired computational intelligence algorithm. Swarm here
refers to a group of living objects such as a flock of birds, school of fishes etc. Each
bird in the flock is technically referred to as particle in the swarm. The aim of the algo-
rithm is to emulate the biological behavior of birds in theway they inter-communicate
to reach their home(destination). It has been studied that the final decision of the bird



280 Y. Vineetha et al.

about the direction in which it has to fly is based on the individual decision of that
bird (Local Decision) and the decision of the flock (Global Decision). The objec-
tive is to minimize the distance of the bird from their current location to their final
destination. Hence in general, PSO is a minimization algorithm. Each particle in the
swarm is a potential solution to the problem [6, 7].

PSO Objective Function

The PSO is modeled to find the solution to HMM that maximizes the probability of
generation of the model. The probability of generation of the model is formulated
in terms of two iteratively updated variables. A forward probability variable F(r, t)
is considered, which takes care of generation of the random sequence V , upto the
r th frame, with the condition that the r th frame gets generated from t th state. The
forward probability variable can be written in a recursive manner as,

• Initialization: F(1, 0) = π0 ∗ P(V1/S1 = 0) and F(1, 1) = π1 ∗ P(V1/S1 = 1)
• Recursive equation

F(r, t = i) = F(r − 1, t = 0) × p0,i × P(Vr/t = i)+
F(r − 1, t = 1) × p1,i × P(Vr/t = i); ∀i = 1 or 0

(2)

• Terminate when r = N (final state/ final slot)

A backward probability vector B(r, t) is used, which governs the generation of
random vector V from (r + 1)th frame to N th frame, under the condition that the
r th frame gets generated from t th state. Backward probability can be written in a
recursive manner as

• Initialization: B(N , 0) = 1 and B(N , 1) = 1
• Recursive equation

B(r, t = i) = B(r + 1, t = 0) × pi,0 × P(Vr+1/t = 0)+
B(r + 1, t = 1) × pi,1 × P(Vr+1/t = 1); ∀i = 1 or 0

(3)

• Terminate when r = 1.

The generation probability of HMM can be written in terms of F(r, t) and B(r, t)
as

G =
1∑

t=0

F(r, t) × B(r, t); r ∈ 1, 2, 3, . . . , N (4)

The objective function of PSO is hence formulated using (4) as J = 1
G .

PSO Algorithm

The outcome of the vector [π0 p10 p01 h10 h01] (hidden parameters) is treated as the
position of the particle. The distance from the destination position is treated as the
objective function J = 1

G . It is noted that the elements of the vector are probabilities
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and hence the range is restricted between 0 to 1. The PSO algorithm is adopted that
minimizes the objective function J is as given below.

1. Initialize the positions of the particles a1, a2, . . . aN . (with the elements of the
vector ranging from 0 to 1).

2. initialize the tentative next positions of the birds b1, b2, . . . bN (with the elements
of the vector ranging from 0 to 1). Compute the corresponding cost function
associated with the corresponding particles as J1, J2, . . . JN .

3. Compute t = argimin Ji .
4. Identify the next set of locations as follows.

ci = |ai + α1 × (bi − ai ) + α2 × (bt − ai )|
if (ci >= 1), ci is randomly chosen with the elements ranging from 0 to 1.

5. Assign ai = ci .
6. Compute the cost function associated with the corresponding particles c1, c2, . . .

cN as K1, K2, . . . KN .
7. If Ji > Ki , then bi = ci else bi = bi .
8. Repeat the steps for finite number of iterations and the best particle’s position

corresponding to the lowest functional value J is declared as the estimated hidden
parameter.

An illustration of how particles move in PSO occurs is as in Fig. 4. In the figure,
the boundary of box is having range from −1 to +1, because, the particle elements
are probabilities that can take a valid value in range 0 to 1. 3 particles are considered.

Fig. 4 Illustration of PSO particle movement
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In the illustration, the triangles represent the initial position of the particles and
the circles represent the tentative next position (local decision) of the particles. The
global decision of the flock (green circle) can be considered as the one that is nearest
to the destination (purple star). For understanding the particle motion in space, let
us consider the maroon color particle (triangle) movement. The particle movement
is governed by a linear combination of the particle’s local decision (maroon circle)
and the flock global decision (green circle). Also, in the box, the portion colored
green is the safe zone which corresponds to a valid probability value and red color
corresponds to the restricted zone - invalid probability values. A case of the linear
combination resulting in the location of the particle’s next position (orange diamond)
in the restricted zone is considered for illustration. In such case, the particle is flipped
back to a position in the safe zone (blue diamond). A case that the particle position
outside the box boundary might also arise. In such a case, the particle is positioned
in a random location within the safe zone and iterations continue.

Since it is assumed that the PU activity is known for first 100 slots out of 3000
slots in a frame, the information is utilized to estimate the parameters of the HMM
parameters. The initialization of PSO is made using the known information.

4 Proposed Technique to Estimate the Outcome of Random
Vectors - Task 2

Empirical Match Algorithm

Estimation of the the outcome of the random vector S given the outcome for the
random vectorV and the estimated hidden parameters λest fromTask 1 is proposed to
be done using the Empirical Match algorithm as described below. For the estimation,
it is assumed that the actual outcome of the random vector S is known for 1/30th
(3.33%) of the sequence. The rest of the 96.67% of the sequence is estimated using
the empirical Match algorithm. The objective of the algorithm is to minimize the
Sum Squared Error (SSE) of the stochastic parameters used for estimating S. The
algorithm of the proposed technique is as follows

1. Trend of transitions in the sequence is assumed to be known for 1/30th of the
sequence (say n slots information is known)

2. For the next outcome of random vector V , i.e., Vn+1, the SSE is calculated con-
sidering the possibility of generation of Vn+1 from Sn+1 = 0 and Sn+1 = 1.

3. The Sn+1 that gives lower value of SSE is considered and the estimated sequence
Sest is updated.

4. Repeat steps 2 and 3 till n = N .

The flow chart of the algorithm is as in Fig. 5. The algorithm tries to track closely the
changes in the parameters while estimating the activity of the PU in every successive
slot, there by providing a reliable estimate of the PU activity.
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Fig. 5 Flowchart illustrating
the empirical match
algorithm

5 Experimental Setup and Results

The spectrum sensing is performed at uniform intervals of times referred to as sensing
slots or just slots. The sensing results (1 or 0 basedwhether the PU is active or inactive
in the slot respectively) in the slots are considered as the outcome of random vector
S. It is assumed that the CR network parameters donot cange over 300000 slots
(Stationary process). For the purpose of experiment, the spectrum sensing data is
arranged into a 100 × 3000matrix. Each row of thematrix is referred to as a frame. It
is assumed that activity of the PU is known for 3.33%of slots per frame, i.e., 100 slots
per frame. HMM model of the CR network is considered and the model parameters
are the set of transition and emission probabilities of the HMM model represented
by the vector λ = [π, p10, p01, h10, h01]. The definition of the elements of the HMM
model is provided in Sect. 2. The elements of vector λ reflects to the PU activity
−[π, p10, p01] and the erroneous channel conditions−[h10, h01]. The PU is assumed
not to change its state within a slot and also it is assumed that the probability that
the PU continues to be active/inactive for some slots continuously, once it becomes
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active/inactive is high i.e., p11 and p00 is high compared to p10 and p01. The choice
of the emission probabilities h01 and h10 is made randomly, a high value of which
indicates bad channel conditions and hence a high probability of error in sensed
sequence and vice-versa.

Estimation of PU Activity Using Conventional and Proposed Techniques

The spectrum estimation is performed using

1. Conventional method Expectation Maximization followed by Empirical match
algorithm

2. Proposed method using PSO followed by Empirical match algorithm.

Experiments were performed for 6 different sets of typical combinations of CR
network parameters (HMM parameters). The performance of the proposed algo-
rithms is compared with the conventional solution. The result is oriented on estimat-
ing the PU activity. The solution obtained using the Proposed CI technique and the
conventional method is compared with the result of the physical spectrum sensing
which clearly illustrates the need for the proposed algorithm. The comparison is
done in terms of percentage of match of the estimated sequence with the actual PU
activity sequence. Also, the percentage of miss detection and false alarm is compared
which is an indication of reduced number of errors in the estimated sequence. The
spectrum estimation was performed using the conventional EM algorithm and the
PSO algorithm followed by empirical match algorithm and results are tabulated in
Table1.

The PSO algorithm with 500 particles was run for 10 iterations and the con-
vergence graph is as shown in Fig. 6. Also an illustration of the HMM parameter
estimation using PSO is shown in Fig. 7 for one set of typical network parameters
(refer to set 1 in Table1). The solution obtained using PSO is compared with the orig-
inal parameters as well as with the initial estimate of parameters using the known

Fig. 6 PSO Convergence
Plot
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Fig. 7 Parameter estimation
using PSO (set 1 in Table1)

Fig. 8 Convergence plot of
empirical match algorithm
(SSE minimization)

information (100 slots). It can be seen that, for all parameters, the PSO solution tries
to converge closer to the original parameter value (Fig. 7).

The Empirical match algorithm is executed once the parameters are estimated
using the PSO algorithm and Expectation maximization. The assumption that the
PU activity is known for 3.33% of slots holds true for empirical match algorithm.
Hence, usingEmpiricalmatch algorithm, the rest 2900 slot activity ofPU is estimated.
Estimation of PU activity in every slot beginning from the 101th slot to the 3000th
slot is done with the objective of reducing the Sum Square Error (SSE) between
the estimated and obtained parameters. The Convergence plot of SSE in Empirical
Match algorithm is as shown in Fig. 8.
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Fig. 9 Illustration of comparison of physical spectrum sensing with the spectrum estimation using
EM and PSO

An illustration of the results of physical spectrum sensing, estimation using EM
followed by empirical match and estimation using PSO followed by empirical match
is shown in Figs. 9 and 10. The figures correspond to the various sets of network
parameters considered for performing the experiments. The figures follow a color
code RGB, where, Red and Blue are used to represent the mismatch between the
estimated sequence and the actual PU activity sequence. Amongst Red and Blue.
Red indicates miss detection and Blue indicates false alarm. The green color is used
to indicate the match which is the main focus of the experiments.
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Fig. 10 Illustration of comparison of physical spectrum sensing with the spectrum estimation using
EM and PSO

6 Conclusion

The chapter proposes a computational intelligence based solution for spectrum esti-
mation in cognitive radio networks. The solution proposed uses the Particle Swarm
Optimization (PSO) followed by the novel Empirical Match algorithm. The futility
of the physical spectrum sensing for opportunistic spectrum access can be overcome
by using the proposed CI based technique. An average improvement of 55.36% over
the physical spectrum sensing is obtained by the use of PSO followed by empirical
match which accounts for additional match of one lakh sixty six thousand slots. This
implies that the SU can better utilize the spectrum, thereby improving the spectrum
utilization and network throughput. The proposed CI based algorithm was compared
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with the conventional solution to the problem using the expectation maximization
followed by empirical match algorithm. It can be seen from Table1 that the CI
based solution to spectrum estimation problem outperforms the convention solution
to problem as well as the physical spectrum sensing method (Energy Detection).

7 Future Scope

The experiments are performed based on the assumption that the PU activity is known
for 3.33% of total time i.e., 100 slots. Scope for further reduction in the amount of
known information can be seen. It is believed that the spectral estimation match can
be improved by increasing the number of states in the HMM.

8 Appendix

Expectation Maximization Algorithm The EM algorithm used in our algorithm is
as follows.

Consider the HMMwith N observations. Let the observation sequence be defined
as V = [

V1V2 . . . VrVr+1 . . . VN
]
, where r is the index variable, r = 1, 2, . . . N .

Also, since the Latent states of the HMM are governed by the PU activity, the
Latent state can be in either of the two states, let the state of the PU be denoted by a
binary variable, ′t ′.

Let F(r, t) denote the forward probability variable and B(r, t) denote the back-
ward probability variable.
F(r,t) means the probability of generating the observation sequence till the r th bit,
with the condition that the r th bit is generated from PU being in t th state. A recursive
formula for forward probability can be written as in Eq.5. The initializations being:
F(1, 0) = π0 ∗ P(V1/S1 = 0) and F(1, 1) = π1 ∗ P(V1/S1 = 1)

F(r, t = i) = F(r − 1, t = 0) × p0,i × P(Vr/t = i)+
F(r − 1, t = 1) × p1,i × P(Vr/t = i); ∀i = 1 or 0

(5)

Similarly, B(r, t) denote the probability of generating the observation sequence from
(r + 1)th bit till end, with the condition that the r th bit is generated from the PU being
in state t . A recursive relation can be developed for finding the backward probability
as in (6). The initializations are B(N , 0) = 1 and B(N , 1) = 1

B(r, t = i) = B(r + 1, t = 0) × pi,0 × P(Vr+1/t = 0)+
B(r + 1, t = 1) × pi,1 × P(Vr+1/t = 1); ∀i = 1 or 0

(6)
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Let M(Vr , t = i) denote the fraction of Vr th bit being generated by the PU in
state t = i , i∈(1,0 ). Then M(Vr , t) can be obtained as

M(Vr , t = i) = F(Vr , t = i) × B(Vr , t = i)

F(Vr , t = 0) × B(Vr , t = 0) + F(Vr , t = 1) × B(Vr , t = 1)
(7)

Let Q(Vr , i, j) denote the fraction of bit Vr being generated as a result of transition
of PU from state i to state j

Q(Vr , t = i) = F(Vr , i) × pi j × P(Vr+1/t = j) × B(Vr+1, j)
∑1

i=0

∑
j=0,1 F(Vr , i) × pi j × P(Vr+1/t = j) × B(Vr+1, j)

(8)
The HMM model parameters can be estimated to maximize the probability of

generation of the observation given the stochastic HMM parameters. The different
stochastic parameters namely, the transition probability, observation probability and
the prior probability can be derived using (7) and (8).
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