
PCA in High Dimensions:
An Orientation
This paper provides a broad overview of the key phenomena associated with
high-dimensional PCA, focusing on asymptotic results for the closeness of eigenvalues
and eigenvectors of the sample covariance matrices to those of the population
covariance matrix.
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ABSTRACT | When the data are high dimensional, widely used

multivariate statistical methods such as principal component

analysis can behave in unexpected ways. In settings where

the dimension of the observations is comparable to the sample

size, upward bias in sample eigenvalues and inconsistency of

sample eigenvectors are among the most notable phenomena

that appear. These phenomena, and the limiting behavior

of the rescaled extreme sample eigenvalues, have recently

been investigated in detail under the spiked covariance model.

The behavior of the bulk of the sample eigenvalues under

weak distributional assumptions on the observations has been

described. These results have been exploited to develop new

estimation and hypothesis testing methods for the population

covariance matrix. Furthermore, partly in response to these

phenomena, alternative classes of estimation procedures have

been developed by exploiting sparsity of the eigenvectors or

the covariance matrix. This paper gives an orientation to these

areas.
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I. I N T R O D U C T I O N

Principal component analysis (PCA) is used throughout
science and engineering to help summarize, represent,
and display data measured on many variables in terms
of a smaller number of derived variables. The method
originated with Karl Pearson in 1901 [1] and Harold
Hotelling in 1933 [2]; further historical discussion appears
in the book by Joliffe [3]. Its routine use in analysis
of data required—and boomed with—the advent of elec-
tronic computers: an early classic in meteorology is the
use by Lorenz [4] of the Whirlwind general purpose com-
puter at the Massachusetts Institute of Technology (MIT,
Cambridge, MA, USA) in the early 1950s to summarize
air pressure data from p = 64 stations across the United
States.

The scale of data collection has exploded in recent
decades, and it is no longer uncommon that the number
of variables or features collected p may be on the order of,
or larger than, the number of cases (or sample size) n. In
this “high-dimensional” setting, under certain assumptions
on the covariance structure of the data, the statistical
properties of PCA exhibit phenomena that are perhaps
unexpected when viewed from the historically standard
perspective of many samples and a fixed number of
variables.

This paper seeks to give an orientation to some of these
high dimensional phenomena, which we label eigenvalue
spreading (Section III), eigenvalue bias (Section IV), and
eigenvector inconsistency (Section V). The discussion is
couched in terms of a particular assumed form for the
covariance structure, the “spiked covariance model,” and
focuses on a proportional asymptotic growth model in
which p/n → γ ∈ (0,∞). While certainly somewhat
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special, it allows clear statements of the phenomena which
occur more widely. The results are introduced first in
the setting of Gaussian observations, then Section VI
reviews some of the many results now available beyond
the Gaussian assumption.

Section VII looks at consequences of these high-
dimensional phenomena in two estimation settings: covari-
ance matrix estimation in a simple spiked model and the
exploitation of sparsity to estimate leading eigenvectors.
Section VIII considers inferential questions in spiked mod-
els from the point of view of hypothesis tests.

Section IX departs from the proportional growth asymp-
totic model to review some nonasymptotic results and
bounds, valid for p and n fixed. Finally, Section X contains
some concluding discussion, including some directions for
extension of spiked models both for PCA, and for a variety
of other multivariate models.

A. Basics of PCA
We start with observed data X1, . . . , Xn ∈ R

p, always
using n for the number of observations on each of p

variables, dimensions, or features. In this paper, the obser-
vations will be assumed independent, though frequently
they are correlated, as in time series. The data for us
are real-valued, but everything goes over to the complex
valued data that arise in signal processing, and indeed
results are sometimes easier to prove for complex-valued
data.

The p × p sample covariance matrix is

Sn = n−1
n�

i=1

(Xi − X̄)(Xi − X̄)′.

Mean correction by X̄ is important in practice, but here for
simplicity we assume that EXi = 0, and work instead with

Sn = n−1
n�

i=1

XiX
′
i = n−1XX′

where the p × n data matrix X has as its ith column
the observation Xi. In the traditional formulation of large
sample theory, p is taken as fixed and n is large, and it
is then well known that we can estimate the population
covariance matrix Σ consistently. For example, if the Xi are
assumed independent and identically distributed (i.i.d.)
with EXiX

′
i = Σ, then Sn

a.s.−→ Σ as n → ∞.
Our main focus is the eigenstructure of covariance

matrices. Linguists and information theorists note that
the most basic concepts typically have short representa-
tions in many languages. So it is with the eigenvalue–
eigenvector decomposition of a sample covariance matrix,
which has been given acronyms in many fields, curiously
always with three letters, for example: principal compo-
nent analysis (PCA), Karhunen–Loeve transform (KLT),
empirical orthogonal functions (EOFs), and proper orthog-
onal decomposition (POD). It is also closely related to the
singular value decomposition (SVD) of the data matrix X.

It is important to distinguish the population and the
sample versions of the eigendecomposition. For the pop-
ulation covariance matrix, we write the eigenvalue–
eigenvector decomposition as

Σ = �1u1u′
1 + · · · + �pupu′

p = ULU′

where U is a p × p orthogonal matrix whose columns are
the eigenvectors ui and L is a diagonal matrix, with entries
�i being the eigenvalues of Σ, by convention arranged in
decreasing order, and assumed here to be distinct. The
sample covariance eigendecomposition is

Sn = λ1v1v′
1 + · · · + λpvpv′

p = VΛV′

where now the orthogonal matrix V has columns which
are the sample eigenvectors vi and diagonal Λ has entries
being the sample eigenvalues λi, again in decreasing
order. Even with distinct eigenvalues, the sign of the
eigenvectors is not identified—this is usually handled by
specifying a convention for choice of sign. Again, in the
traditional setting of p fixed, and large i.i.d. samples n,
the sample eigenquantities converge to their population
targets: as n → ∞, we have λk

a.s.−→ �k and vk
a.s.−→

uk, for each k = 1, . . . , p. Comprehensive references
for this setting include classic texts such as [3], [5],
and [6].

p and n and all that. We noted that the traditional setting
has p much smaller than n. Conversely, there are now
many applications in which p is much larger than n, for
example, in genomics, in which there may be hundreds of
patients n but millions of single nucleotide polymorphisms.
For definiteness, this paper, and much theory, considers the
important “boundary” case, where p is of the same order of
magnitude as n, so that it makes sense to do asymptotic
approximations in which p and n grow proportionately:
γn = p/n → γ ∈ (0,∞).

B. A Low-Rank “Spiked” Covariance Model

We focus on an idealized model for the population
eigendecomposition, consisting of a known “base” covari-
ance matrix Σ0 and a low-rank perturbation

Σ = Σ0 +
K�

k=1

hkuku
′
k. (1)

The signal strengths, or “spikes” hk, as well as the ortho-
normal eigenvectors uk are taken as unknown. The rank
K is small (and stays fixed in asymptotic models as p and
n grow). In the simplest form of this “spiked” model, Σ0

is assumed equal to the identity matrix, or to a (possibly
unknown) scalar multiple Σ0 = σ2I [7]. The term “gen-
eralized spike model” is used when Σ0 is not necessarily a
multiple of the identity [8], [9].

Our study of statistical properties will be primarily
asymptotic, and we remark that an essential feature of high
dimensionality captured in the (generalized) spiked model
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Fig. 1. Sample from an ECG trace sampled at 500 Hz, via Jeffrey

Froning and Victor Froelicher, then at cardiology group at Palo Alto

Veterans Affairs Hospital.

is that as p grows, the empirical distribution (defined in
Section III) of the population eigenvalues of Σ is approx-
imated by a nontrivial limiting probability distribution—
or by a sequence of distributions, one for each p, in
the case of approximation by deterministic equivalents,
e.g., [10, Ch. 6] on [0,∞). We contrast this with, for
example, the important domain of “functional data analy-
sis” and functional PCA, in which the observation vectors
Xi have some intrinsic temporal or spatial smoothness,
and the eigenvalues of Σ decay at some rapid rate,
e.g., [11] and [12].

Returning to model (1), regarding the eigenvectors
u1, . . . ,uK , we want to contrast two situations. The first
makes no assumptions about them, while in the second,
we assume that they are sparse in some known orthonor-
mal basis.

For simplicity, we mostly assume distinct population
eigenvalues so that eigenvectors are identified. Many of the
papers cited in fact include cases when population eigen-
values coalesce (i.e., are degenerate), and some consider
estimation of the resulting eigensubspaces, i.e., the linear
subspaces spanned by the eigenvectors corresponding to
distinct population eigenvalues.

1) Some Examples: A (generalized) spike model may be
an attractive and plausible idealization for data arising in
many domains in science and engineering. An early exam-
ple [13], [14] is provided by electrocardiogram (ECG)
traces (Fig. 1). The signal measured in the ith beat might
be modeled as

Xi = μ +
K�

k=1

�
hkskiuk + σZi. (2)

The periodic beats vary about the mean beat according
to a small number of modes uk with random Gaussian
amplitudes, the kth mode having variance hk. Independent
Gaussian measurement noise is added. The corresponding
covariance matrix Cov(Xi) has the finite rank perturbation
form (1) with Σ0 = σ2I .

Some other examples, described superficially, might
include the following.

• Microarrays: Xi might represent the levels of expres-
sion of p genes in the ith individual. The eigenvector
ui may be sparse as only a small number of genes may
be involved in a given pathway.

• Satellite images: Xi may be suitable subimages. After
a discrete cosine transform, the ui may be sparse [15].

• Medical shapes: Xi may be vectors derived from
landmarks of body organs. Eigenvectors ui may be
sparse due to localized variation [16].

• Climate: Xi might be measurements from a global
sensor network at time i; the EOFs ui are often
localized.

• Signal detection: Xi are observations at sensors, ui

columns of the steering matrix, with signals ski [com-
pare model (2)].

• Finance: Xi is a vector of returns of p assets at time
i, and ui are factor loadings, often not sparse, fki =√

hkski are factors, and Zi are idiosyncratic terms.

In summary, the many examples suggest that the spiked
model is worthy of theoretical study, especially because it
is relatively easy to manage.

II. S TAT I S T I C A L F R A M E W O R K :
D I S T R I B U T I O N O F E I G E N VA L U E S O F
T H E S A M P L E C O VA R I A N C E M AT R I X

For explicit calculations and proofs it is often helpful to
assume that the observations Xi are Gaussian and we
will do so in Sections II–V unless stated otherwise. The
results often remain true if the vectors Xi are not Gaussian,
though still independent, satisfying some structure and
moment conditions; these will be discussed in Section VI.

The Wishart Distribution. Suppose then that the col-
umn vectors Xi are independently distributed as Np(μ, Σ),
a p-variate multivariate normal distribution with popula-
tion mean vector μ and covariance matrix Σ. With mean
μ = 0, the unnormalized sample covariance H = XX′

is said to have the Wishart Wp(n, Σ) distribution with p

variables and sample size, or degrees of freedom n. In
what follows, the “null” case will have Σ = I , though
one could put in an unknown scale parameter. If p ≤ n,
which we suppose for the rest of this section, then H is
nonsingular with probability one. For p > n, the singular
Wishart distribution is defined in [17].

For completeness, we briefly describe the joint density
function of H and its eigenvalues, although they will not
be needed in the rest of the paper. Already in 1928, Wishart
showed [18] that the density function of H ∼ Wp(n, Σ) is

cpn(detΣ)−n/2(detH)(n−p−1)/2 exp
�− 1

2
tr(Σ−1H)

�
.

For details, including the normalization constant cpn, see,
e.g., [6, pp. 85 and 62]. The joint density of the sample
eigenvalues λ1 > λ2 > · · · > λp of S = n−1H was obtained
by James [19], and has the form

c′pn(detΣ)−n/2
p�

i=1

λ
(n−p−1)/2
i

p�
i<j

(λi−λj)0F
(p)
0

�−n
2
Λ, Σ−1

�
where the normalizing constant c′pn is given in [6, p. 388],
0F

(p)
0 (X, Y ) is a hypergeometric function with two sym-

metric p × p matrix arguments X and Y , defined in
[6, p. 259], and Λ = diag(λ1, . . . , λp).
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Fig. 2. Eigenvalue spreading, for p = 100, n= 200. Population eigenvalues shown as histograms in red: left all at 1, ΣΣΣ= I, right equally

spaced on [5,25]: ΣΣΣ=diag(25, . . . , 5). Corresponding histograms of sample eigenvalues shown in blue. Figure credit: Brett Naul.

These density functions, although explicit, are suffi-
ciently elaborate in form that it is desirable to develop
approximations. When dimensionality p and sample size
n are large, such approximations may be derived from
random matrix theory, as will be reviewed in succeeding
sections.

III. H I G H-D I M E N S I O N A L
P H E N O M E N O N I : S P R E A D I N G
O F E I G E N VA L U E S

Our first high-dimensional phenomenon relates to the
general fact, perhaps emphasized first by Charles
Stein [20], [21], that the sample eigenvalues are more
spread out, or dispersed, than the population eigenvalues.

When p is proportional to n, the effect is very strong.
Fig. 2 illustrates this: in the left panel, all population
eigenvalues equal 1, but the p = 100 sample eigenvalues
have a histogram (over repeated sampling) that spreads
over an order of magnitude. In the right panel, the popu-
lation eigenvalues are equally spaced between 5 and 25,
and the sample eigenvalues spread over a range from less
than 1 to over 50. We see that the effect depends both on
the population matrix Σ and also very strongly on the ratio
γn = p/n, becoming more pronounced as γn increases.

The Quarter Circle Law. The importance of the spreading
phenomenon and the complexity of the exact joint dis-
tributions for fixed n and p make it natural to look for
approximations and limits. Marčenko and Pastur [22] (see
also [23]and [24]) gave a celebrated functional equation
for the limiting distribution as p/n → γ for general Σ. The
special case of Σ = I , that is, the “null” or “white” case, has
a simple and important form that we show here. Suppose
that H ∼ Wp(n, I). The empirical distribution function
for the p sample eigenvalues of Sn = H/n is given by
Fp(x) = p−1#{λj ≤ x}.

If p/n → γ ≤ 1, then the empirical distribution con-
verges Fp(x) → F (x), with the limit distribution F having
a density function of the celebrated quarter-circle form

fMP (x) =
1

2πγx

�
(b+ − x)(x− b−) (3)

for x within the interval defined by the upper and lower
edges b± = (1±√

γ)2. The larger the ratio p/n, and hence
γ, the larger the interval, in other words, the larger is the
spreading of sample eigenvalues. If p is small relative to
n, then the distribution concentrates at 1, as occurs for p

fixed, and as is to be expected when the data asymptoti-
cally allow perfect estimation. Fig. 3 shows the examples
p = n/4 in blue, and the extreme case p = n in green.

If p > n, the sample covariance Sn has only n positive
eigenvalues (with probability 1), and the remaining p − n

eigenvalues equal 0. If p/n → γ > 1, the limit distribution
F may be written in differential form as

F (dx) = (1 − 1/γ)δ0(dx) + fMP (x)dx

with δ0 representing a unit point mass at 0, and fMP as
above, supported on the interval b± = (

√
γ ± 1)2.

The name quarter-circle law also recalls the related,
and celebrated Wigner semicircle law [25] which describes
the limiting eigenvalue distribution for symmetric square
matrices with i.i.d. entries.1

1A historical note: the quarter-circle law was derived for Σ = I
independently, though not published, by Charles Stein [26]. It was
presented as a generalization of Wigner’s law in a Stanford course in
1966, though “it seemed clear at the time that he had done the derivation
somewhat earlier (perhaps in the 1950s)” (Stephen Portnoy, personal
communication).

Fig. 3. Two instances of the Marčenko–Pastur quarter circle law

fMP(x) from (3): blue for γγγ= p/n = 1/4, green for γγγ= 1.
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Fig. 4. Below phase transition: Population quantities are in red,

sample ones in blue. All population eigenvalues equal 1 except

perhaps for the top one ���1. Below the critical value 1+
√
γγγ, the value

of ���1 has no effect on the limiting distribution of λλλ1, the

Tracy–Widom distribution as in (5).

IV. H I G H-D I M E N S I O N A L
P H E N O M E N O N I I :
E I G E N VA L U E B I A S

The second important phenomenon to emerge when p is
proportional to n is that of bias in the top eigenvalues,
combined with a phase transition in behavior that depends
on the strength of the spike(s). Known as the Baik/Ben
Arous/Péché (BBP) phase transition, it was first estab-
lished for complex valued data in [27]. We first give an
informal description of the bias and limiting distribution
of the top sample eigenvalue(s) in the spiked model, and
then a fuller set of references to the now large literature.

Consider a single spike K = 1 and suppose that a basis
has been chosen so that the population covariance matrix
is diagonal: Σ = diag(�1, 1, . . . , 1). If p = γn, the sample
eigenvalues are approximately spread out according to the
Marcenko–Pastur distribution, with upper end point of the
bulk at b+ = (1 +

√
γ)2; compare Fig. 4.

In a “null hypothesis” case, we have also �1 = 1. In that
case, the largest sample eigenvalue is located near the
upper edge b+ and fluctuates on the (small) scale n−2/3

approximately according to the real-valued Tracy–Widom
distribution: λ1 ≈ μ(γ) + n−2/3σ(γ)TW1, where

μ(γ) = b+ = (1 +
√

γ)2, σ(γ) = (1 +
√

γ)4/3γ−1/6.

(4)
For fixed γ ∈ (0,∞), this was established for complex-
valued data (with limit distribution TW2) in [28] and for
real-valued data in [7]. An extension for p/n → 0 or ∞
(so long as min{p, n} → ∞) was given by [29].

In the non-null cases, with �1 > 1, the limiting
bulk distribution of all sample eigenvalues is unchanged,
essentially since it is unaffected by a single value. More
surprisingly, however, for �1 ≤ 1 +

√
γ, the largest

Fig. 5. Above the phase transition: for ���1> 1 +
√
γγγ, the limiting

distribution of λλλ1 is now Gaussian, as in (6).

sample eigenvalue has the same limiting Tracy–Widom
distribution—the (small) spike in the top population eigen-
value has no limiting effect on the distribution of the
sample top eigenvalue. Put in another way, asymptotically
the largest sample eigenvalue is of no use in detecting a
subcritical spike in the largest population eigenvalue.

A phase transition occurs at 1 +
√

γ: for larger values
of �1, the largest sample eigenvalue λ1 now has a limiting
Gaussian distribution, with scale on the usual order of
n−1/2; compare Fig. 5. The mean of this Gaussian distri-
bution shows a significant upward bias, being significantly
larger than the true value of �1. It is perhaps noteworthy
that the phase transition point 1 +

√
γ for � lies buried

within the bulk.
Appendix A gives a heuristic derivation and explanation

for the inconsistency and the bias formula above the phase
transition.

To summarize, for 1 ≤ � < 1+
√

γ, if p/n = γ +o(n−2/3)

n2/3

�
λ1 − μ(γ)

σ(γ)

	
D⇒ TWβ (5)

where μ(γ), σ(γ) in (4) do not depend on �. The limiting
Tracy–Widom distribution TWβ is more dispersed for real-
valued data (β = 1 [30]) than complex-valued data
(β = 2 [31]), but the centering and scaling constants are
unaffected. The complex data result is established in [27]
via analysis of Fredholm determinants, and the real case
in [32] using a triadiagonal representation of XX ′.

On the other hand, above the phase transition,
� > 1 +

√
γ

n1/2

�
λ1 − λ(�, γ)

τβ(�, γ)

	
D⇒ N(0, 1). (6)

There is a simple formula for the limiting upward bias
in λ1

λ(�, γ) − � = γ
�

� − 1
(7)
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Fig. 6. Upward bias of (asymptotic) mean of λλλ1, denoted by λλλ

(���)=λλλ(���, γ) in (7), for ���> 1 +
√
γγγ. Marčenko–Pastur density shown for

reference in blue; the phase transition point is well inside the bulk.

which does not vanish as � increases; on the contrary, it
decreases to the limiting value γ as � → ∞. See Fig. 6.
The bias formula (as an almost sure limit) was established
in [33]. The asymptotic variance is

τ 2
1 (�, γ) = 2�2



1 − γ

(� − 1)2

�
in the real case, the convergence (6) being established
by [34] by a perturbative method. An O(n−1/2) Edgeworth
correction term is given by [35]. In the complex case,
τ 2
2 = τ 2

1 /2, as shown in the original BBP paper [27], via
a Fredholm determinant analysis.

If � − 1 − √
γ ∼ wn−1/3, corresponding to the critical

regime, then the limit distribution for λ1, still on scale
n−2/3, is given by a modification of TW that depends on
w [27], [32].

In the domain of factor models in economics,
Harding [36] shows how these formulas exactly explain
formerly puzzling phenomena observed in an influential
empirical study [37] of properties of PCA applied to factor
models published nearly 20 years earlier.

V. H I G H-D I M E N S I O N A L
P H E N O M E N O N I I I : E I G E N V E C T O R
I N C O N S I S T E N C Y

The third new phenomenon of the proportional sample
size regime is perhaps the least recognized: namely that
the leading eigenvectors in high-dimensional PCA can be
inconsistent.

Continuing the informal description in Figs. 4 and 5,
note that even when the population eigenvalue �1 is well
above the phase transition, there isi a nontrivial angle
between the sample eigenvector v1 and its population
counterpart u1. As the signal strength of the eigenvalue �1
decreases, the angle between v1 and u1 increases; indeed,
when �1 falls below the phase transition 1 +

√
γ, v1 is

Fig. 7. Inconsistency of the top sample eigenvector v1 for

estimating the top population eigenvector u1 in the spiked

covariance model when p∝∝∝n. See (8).

asymptotically orthogonal to u1, and gives no information
about u1. More explicitly, if p/n → γ > 0, then

〈v1,u1〉2 →

���
1 − γ/(�1 − 1)2

1 + γ/(�1 − 1)
, �1 > 1 +

√
γ

0, �1 ∈ [1, 1 +
√

γ].

(8)

Appendix B gives a heuristic derivation of this formula,
continuing the arrowhead matrix method set out in
Appendix A.

Inconsistency of the largest sample eigenvector in this
setting was first established by Lu [38], [39]. Equation (8)
appears in various settings in the physics literature
[40], [41], and rigorous discussions in high-dimensional
PCA under various model assumptions have appeared in
many articles, including [34]and [42]–[46].

Fig. 7 depicts the sample PC v1 as approximately
uniformly distributed on a spherical cap at a nonzero
angle to the population PC u1 More precisely, the angle
〈v1,u1〉2 concentrates near the limiting value given in
(8). However, if v⊥ = v1 − 〈v1,u1〉u1 is the com-
ponent of v1 orthogonal to u1, then v⊥/‖v⊥‖ is uni-
formly distributed on a unit sphere Sp−1. This picture
is exactly correct when the data Xi are i.i.d. Gaussian
[34, Th. 6], and asymptotically accurate more gen-
erally; the “delocalization” property will be discussed
in Section VI-B.

The discussion here focuses on the proportional regime
p/n → γ ∈ (0,∞). The behavior of PCA in settings
when dimensionality p is much larger than n has been
studied, for example, in [47]–[50]. Broadly speaking, if
the spike eigenvalues remain fixed as p grows, the incon-
sistency properties can only get worse, but if the spike
eigenvalues grow sufficiently fast with p and n, then con-
sistent estimation of eigenvalues and vectors can still be
possible.
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VI. U N I V E R S A L I T Y P H E N O M E N O N

As we have seen, in the context of spectral analysis of
the sample covariance matrix, the boundary case, namely
when p/n → γ ∈ (0,∞), yields many fascinating phenom-
ena associated with the spectral elements of the Wishart
matrix S = n−1XX′ with far reaching implications for sta-
tistical inference and signal processing in high-dimensional
problems. However, many of the asymptotic results, espe-
cially those related to the behavior of extreme sample
eigenvalues, and the sample eigenvectors under a spiked
covariance model, were initially derived under the assump-
tion of Gaussianity. In spite of providing valuable insights,
these results by themselves are therefore still limited in
their scope for practical data analysis. However, during the
last decade, a large body of literature has been developed,
primarily by analysts and probabilists, under the banner of
“universality,” that has greatly extended the scope of these
results, and therefore enhanced the scope of statistical
inference.

Universality in the context of random matrix theory
(RMT) typically refers to the phenomenon that the limiting
behavior of certain eigenvalue–eigenvector statistics does
not depend on the distribution of the entries of the random
matrix. One of the major threads of contemporary research
in RMT has been to establish that the asymptotic behavior
of eigenvalues both at the bulk and at the edges essentially
remains invariant as long as the first few moments of the
distribution of entries match with those of a Gaussian data
matrix.

A. Universality of Eigenvalue Statistics

At the level of convergence of the empirical spectral dis-
tribution, the bulk behavior of the eigenvalues of the sam-
ple covariance matrix is universal, as long as the entries
of that data matrix X are standardized independent ran-
dom variables satisfying a Lindeberg-type condition [51].
The limiting distribution of normalized extreme (or edge)
eigenvalues started receiving increased attention with the
works of Soshnikov [52] who proved the Tracy–Widom
limit of the normalized largest eigenvalues a Wishart
matrix. This result, and its extension by [53] required
the existence of all moments (in particular, sub-Gaussian
tails) and symmetry of the distribution of entries of X.
Phase transition phenomena for the leading eigenvalues
of a sample covariance matrix were established in [54]
assuming only the existence of fourth moments of the
observations. Bai and Yao [55] extended these results and
the Gaussian limits for the leading sample eigenvalues
when their population counterparts are above the phase
transition point. In [56], they extended these results fur-
ther to the setting of a generalized spiked model where the
nonleading eigenvalues are slowly varying as opposed to a
constant.

Over the last few years, radical progress on establishing
the universality phenomena has been made by Erdös et al.
[57]–[60] and Tao and Vu [61]–[63] who used analytical

techniques to study the question of both bulk and edge
universality under much more relaxed assumptions on
the entries. The “four moments theorems” of Tao and
Vu assert effectively that the limiting behavior of the
local eigenvalue statistics of a matrix of the form XX′ is
the same as when the entries of the data matrix X are
i.i.d. standard Gaussian, provided the first four moments
of the entries of X match with those of the standard
Gaussian. A prototypical instance of such results is the
following.

Theorem [63]: Let X = ((Xij)) and X̃ = ((X̃ij)) be
p × n matrices with p, n → ∞ such that p/n → y ∈
(0, 1]. The entries Xij (respectively, X̃ij) are independently
distributed, have mean zero and variance 1, and obey the
moment condition supi,j E[|Xij |C0 ] < C for a sufficiently
large constant C0 ≥ 2 and some C independent of p, n.
Moreover, all the moments of order up to 4 are identi-
cal for Xij and X̃ij . Let S and S̃ denote the associated
covariance matrices. Then, the following holds for suffi-
ciently small c0 and for every ε ∈ (0, 1) and for every
k ≥ 1.

Let G : R
k → R be a smooth function obeying the

derivative bound

‖∇jG(x)‖∞ ≤ nc0

(where ‖·‖∞ denotes the largest element) for all 0 ≤ j ≤ 5

and x ∈ R
k. Then, for any εp ≤ i1 < i2 < · · · < ik ≤

(1 − ε)p, and for sufficiently large n depending on ε, k, c0,
we have

|E[G(nλi1(S), . . . , nλik (S))] − E[G(nλi1(S̃), . . . , nλik (S̃))]|

≤ n−c0

where λj denotes the jth largest eigenvalue.
Pillai and Yin [64] extended the domain of validity of

the bulk and edge universality results even further by
only requiring that the first two moments of the entries
of X match that of a standard Gaussian, subject to a
subexponential tail behavior. Key steps in the derivation
of these results are: 1) to derive a strong local Marčenko–
Pastur law, which gives a precise estimate of the local
eigenvalue density; 2) to embed the covariance matrix
into a stochastic flow of matrices so that the eigenvalues
evolve according to a coupled system of stochastic differ-
ential equations, called the Dyson Brownian motion; and
3) to implement a Green function comparison method that
establishes closeness between the eigenvalue statistics of
the Dyson Browian motion at time t = O(n−1) with that
of the original matrix, corresponding to flow at time t = 0.
As a corollary, one obtains that the limiting distribution
of the normalized largest eigenvalue of S is the Tracy–
Widom distribution. The use of Dyson Brownian motion
in the work of [64] can be broadly seen as a stochas-
tic interpolation technique that builds a bridge between
the data matrix X and a matrix of the same dimension
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with i.i.d. Gaussian entries with identical first two
moments.

The above universality results are for the null Wishart
case. For the more general setting, when X = Σ1/2Z,
where Σ1/2 is a symmetric p × p matrix and Z is a
p × n matrix with i.i.d., zero mean, unit variance entries,
universality of extreme eigenvalues of S = n−1XX′ has
been an object of intense study more recently. For a spiked
covariance model, universality of extreme eigenvalues was
established in [65] under the assumption that Σ is diagonal
with all but a finite number of diagonal entries equal to
1, and the entries of Z have vanishing odd moments. The
latter assumption was relaxed by Bloemendal et al. [66],
who also established large deviation bounds on the spiked
eigenvalues of S. Edge universality, and in particular the
phase transition phenomena and Tracy–Widom limit for
renormalized spiked sample eigenvalues in the subcriti-
cal regime, for a general nonidentity diagonal matrix Σ,
has been established by Bao et al. [67] and Lee and
Schnelli [68]. They have used techniques closely related
to those utilized in [64].

B. Universality of Sample Eigenvectors

Study of the behavior of the eigenvectors of a sample
covariance matrix arises in the context of PCA. When X has
i.i.d. zero mean Gaussian entries, distributional invariance
under multiplication of X by orthogonal matrices implies
that the matrix of eigenvectors of the sample covariance
matrix S is Haar distributed, that is, the distribution is uni-
form on the space of orthogonal matrices. In particular, this
means that the individual eigenvectors of S are uniformly
distributed on the unit sphere in R

p. Several results have
been derived to describe analogous behavior of the matrix
of eigenvectors even when X is not Gaussian. A first result
of this kind was proved by Silverstein [69] who showed
that if the first four moments of the entries of the data
matrix match those of the standard Gaussian, then the
matrix of eigenvectors is asymptotically Haar distributed
as p/n → γ ∈ (0,∞).

One of the qualitative features of these results is the
observation that entries of individual sample eigenvectors
are of similar magnitude, a phenomenon often referred to
as a delocalization property of eigenvectors. Such delocal-
ization results are typical byproducts, and indeed impor-
tant ingredients, in the contemporary investigations on
universality of sample eigenvalues [63], [64].

Eigenvectors associated with the spiked eigenvalues of
S under a spiked covariance model are of obvious interest.
The eigenvector phase transition result (8) suggests that
when a population spike is below the phase transition
limit 1 +

√
γ, the corresponding sample eigenvector is

orthogonal to the population eigenvector and therefore
does not contain any information about the latter. As a
generalization, Bloemendal et al. [66] established the large
deviation properties of linear functionals of the sample
eigenvectors under a spiked population model, with a

diagonal population covariance matrix Σ that is a fixed
rank perturbation of the identity, and with distributions
of observations having subexponential tails. They showed
that, when a population spike eigenvalue �j is above the
phase transition limit 1 +

√
γ, the corresponding sample

eigenvector vj concentrates on the intersection of the unit
sphere and a cone around the true population eigenvector,
as in the Gaussian case (Fig. 7). Moreover, the eigenvector
vj is completely delocalized in any direction orthogonal
to the corresponding population eigenvector uj , while for
spikes below and strictly away from the phase transition
limit, the corresponding sample eigenvectors are com-
pletely delocalized. A surprising finding of [66] is that,
when a spiked eigenvalue �j , say, is in close proximity to
the phase transition point, so that |�j − (1 +

√
γ)| � 1, the

complete delocalization of the sample eigenvector vj in the
direction of the corresponding population eigenvector uj

breaks down.

VII. E S T I M AT I O N I N S P I K E D M O D E L S

The spiked covariance model has a natural interpreta-
tion in terms of factor models that are commonly used
in econometrics and various branches of sciences. Partly
because of this, and partly owing to the well-understood
characterization of the asymptotic behavior of the sample
eigenvectors and eigenvalues, the spiked covariance model
has gained popularity in high-dimensional statistical esti-
mation theory and inference. Investigations have focused
on two related problems, one primarily dealing with esti-
mation of the leading eigenvectors of a spiked covariance
matrix and the other focusing on the estimation of the
covariance matrix itself.

A. Estimation of Leading Eigenvectors
Under Sparsity

One branch of this estimation theory assumes some
form of sparsity of the eigenvectors associated with the
spiked eigenvalues. Specifically, the covariance matrix Σ is
assumed to be of the form Σ =

�K
k=1 �̃kukuT

k +σ2Ip, where
�̃1 ≥ · · · ≥ �̃K > 0, with the orthonormal eigenvectors
u1, . . . ,uK having only a few coordinates significantly
different from zero. Under this framework, various non-
linear estimation strategies have been proposed for esti-
mating the eigenvectors of Σ. This line of research started
with [14] who established consistency of an eigenvector
estimator that is obtained by a two-stage procedure. In this
method, the first stage involves selection of coordinates
based on thresholding the sample variances, which is
then followed by a PCA of the selected submatrix of the
sample covariance matrix. Improved coordinate selection
schemes, together with detailed analyses of the minimax
optimality of the proposed estimators, have been studied
in [70] and [71], while alternative estimation strategies
and their asymptotic properties have been investigated
in [72] and [73], among others. Under the assumed model,
the eigenvector estimators can also be utilized to obtain
consistent estimates of Σ or Σ−1 (e.g., [74]).
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Table 1 Optimal Shrinkage Functions η∗�λ� γ� for a Selection of Loss Functions Under a Spiked Covariance Model [77]. We Set c � c��� �
�
��− γ/�� − ����/�� � γ/�� − ��� and s �

�
�− c�. Here � � ��λ�, c � c���λ�� and s � s���λ�� Depend on λ Through (9) and Implicitly Also on γ.

Values Shown Are Shrinkers for λ > λ��γ�; All Shrinkers Satisfy η∗�λ� � � for λ ≤ λ��γ�

B. Estimation of the Covariance Matrix

While the assumption of sparsity of the eigenvectors
allows one to solve the problem of covariance estima-
tion in dimensions much larger than the sample size, in
the absence of such structural assumptions, there is little
hope of obtaining meaningful estimates in the p � n

setting. However, interesting covariance estimation proce-
dures have been developed by making use of the eigen-
value and eigenvector phase transition phenomena in the
“boundary case” p/n → γ ∈ (0,∞) under the spiked
covariance model. There are alternative estimation strate-
gies (notably, in [75] and [76]) that do not rely on a spiked
covariance formulation, but rather restrict attention to
rotation-equivariant estimators. These estimators of Σ are
of the form Vη(Λ)V′, where VΛV′ denotes the spectral
decomposition of the sample covariance matrix S, and η(·)
denotes an appropriate nonlinear shrinkage applied to the
sample eigenvalues (diagonal of Λ).

To keep the discussion well connected with the remain-
der of this paper, below we focus on an estimation
strategy [77] specifically designed for a spiked covariance
model. It also shows clearly the consequences for esti-
mation of each of the three high-dimensional phenomena
discussed in Sections III–V.

The strategy is inspired by early work of Stein, reported
in the 1975 IMS Rietz Lecture, partly published in [78].
Suppose that Xi

i.i.d.∼ Np(0, Σp), for i = 1, . . . , n, with Σp

having a spiked covariance structure, namely, the eigenval-
ues of Σ are �1 ≥ · · · ≥ �r > 1 = · · · = 1 for some fixed
r ≥ 1. Because of the eigenvalue spreading phenomenon,
we want to shrink the sample eigen values. Here we
propose using a single univariate function η to do the
shrinking. With no prior information about the population
eigenvectors, we leave the sample eigenvectors alone. This
leads to an orthogonally invariant estimator of the form

Σ̂η(Sn) = η(λ1)v1v′
1 + · · · + η(λp)vpv′

p.

While this is a more special form than the general rotation-
invariant estimator Vη(Λ)V′ mentioned earlier, it turns
out that in the present setting, nothing is lost asymptot-
ically by the restriction to scalar shrinkers [77, Sec. 8].

Fig. 8. Schematic to motivate dependence of optimal shrinkage on

the error measure. The observed sample eigenvalue λλλ1 is shrunk by

ηηη(λλλ1) along sample eigenvector v1. Since v1 is necessarily

misaligned with the truth u1, the error incurred depends on the

metric used.

In view of the eigenvalue bias phenomenon, and the
explicit upward bias function (7) for the top sample
eigenvalue, it is natural to think that one could just undo
the bias by choosing the shrinkage function η to be the
inverse of λ(�)

�(λ) =

���
λ + 1−γ +

�
(λ + 1−γ)2 − 4λ

2
λ > λ+(γ)

1 λ ≤ λ+(γ).
(9)

Note that the inversion is to be applied only to sample
eigenvalues above the phase transition λ+(γ) = (1+

√
γ)2.

However, this idea is complicated by the eigenvector
inconsistency phenomenon. In view of (8), the top pop-
ulation and sample eigenvectors u1 and v1 span a plane,
shown in Fig. 8. Inversion of λ1 to �(λ1) still makes an error
because of the error of v1 in tracking u1. Depending on
how we measure the error, it seems clear that some other
shrinkage value η(λ1) might lead to a smaller error than
simply undoing the bias.

Indeed, Table 1 shows some many commonly used
orthogonally invariant loss functions, such as the operator
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loss, Frobenius loss, entropy loss, Stein’s loss and Fréchet
loss, and the optimal shrinkage function, available in
closed form, that minimizes the limiting loss

L∞(η|�1, . . . , �r) = lim
n,p→∞

Lp(Σp, Σ̂η(Sn)) (10)

in the asymptotic framework p/n → γ ∈ (0, 1] as p, n → ∞.
Indeed, for the operator norm, it is best to invert the bias
function, but for the other loss functions, a notably larger
amount of shrinkage is done, especially for Stein’s loss. The
key point is that the choice of loss function critically affects
which estimator is optimal, and this follows directly from
the high-dimensional phenomena outlined earlier.

VIII. I N F E R E N T I A L Q U E S T I O N S U N D E R
T H E S P I K E D M O D E L F R A M E W O R K

One of the earliest uses of the distribution of the largest
eigenvalue of the sample covariance matrix is in testing
the hypothesis H0 : Σ = Ip when i.i.d. samples are
drawn from a N(μ, Σ) distribution. This testing problem,
typically referred to as testing the hypothesis of sphericity,
has a long history. Mauchly [79] first derived the likeli-
hood ratio test for sphericity under the classical fixed p

and Gaussian observations regime. The (Gaussian) locally
most powerful invariant (under shift, scale and orthogonal
transformations) test was obtained by John [80], [81] and
by Sugiura [82]. Ledoit and Wolf [83] proposed extensions
(for the unknown and known scale problems) of John’s
test, while Bai et al. [84] proposed corrections to Mauchly’s
likelihood ratio test for the p/n → γ ∈ (0,∞) regime.
Taking a different approach, Pillai [85], [86], [87] utilized
the asymptotic behavior of the largest sample eigenvalue
to develop tests for sphericity under the fixed p (Gaussian)
regime.

The Tracy–Widom law for the largest sample eigenvalue
under the null Wishart case, i.e., when the population
covariance matrix Σ = Ip, allows a precise determination
of the cutoff value for the largest root test. With a careful
calibration of the centering and normalizing sequences,
this cutoff value is very accurate in terms of having the cor-
rect level of significance even for relatively small p and n

[7], [88], [89]. In addition, the Tracy–Widom law for the
largest eigenvalue has been extensively used for signal
detection [90], [91], [92], [93]. Many of these approaches
use a sequential hypothesis testing framework whereby
the Tracy–Widom law is used to determine the null dis-
tribution for testing the presence of an additional signal
direction.

In view of various contrasting approaches, a detailed
analysis of the behavior of the power function for tests of
sphericity requires formulating suitable alternative mod-
els. The spiked covariance model provides such a con-
venient model that has easy interpretability, and at the
same time has enabled researchers to carry out pre-
cise power analysis. The asymptotic power of various
tests for sphericity has been thoroughly investigated by

Onatski et al. [94], [95], [96]. We provide here a brief
overview of these works.

Onatski et al. [94] studied the asymptotic power of tests
of sphericity against perturbations in a single unknown
direction as both p and n go to infinity. They established
the convergence, under the null hypothesis and contiguous
alternatives, of the log ratio of the joint densities of the
eigenvalues of the sample covariance under the alternative
and the null, to a Gaussian process indexed by the norm of
the perturbation. They showed that when the norm of the
perturbation is below the phase transition threshold, the
limiting log-likelihood ratio process is nondegenerate, and
the joint eigenvalue densities under the null and alterna-
tive hypotheses are mutually contiguous. Importantly, con-
sistent with (5), under the contiguous alternative regime,
the asymptotic power of the Tracy–Widom-type tests is
trivial (i.e., equals the asymptotic size), whereas that of
the eigenvalue-based likelihood ratio test is always larger
than the size and increases to one as � ↗ 1 +

√
γ.

IX. F I N I T E S A M P L E B E H AV I O R O F
P R I N C I PA L C O M P O N E N T S

While most of the work within the framework of high-
dimensional PCA is asymptotic in nature, with both p, n →
∞ together, there have been notable recent developments
in terms of providing finite sample bounds on the discrep-
ancy between the population eigenvalues and eigenvectors
and their sample counterparts. One of the first works of this
kind is by Nadler [42], who considered a Gaussian obser-
vation model with a single spike for the covariance matrix,
and established probabilistic bounds for fluctuations of
the largest eigenvalue of the sample covariance matrix
for arbitrary p and n. He also established a finite sample
probabilistic bound for the sine of the angle between the
leading sample eigenvector and the corresponding popu-
lation eigenvector. A feature of the work by Nadler [42]
is the use of “small-noise asymptotics,” whereby for fixed
p and n, the noise variance (which equals the value of
the nonspiked eigenvalues) is allowed to converge to zero.
He provided analytic expansions of the leading sample
eigenvalue under this asymptotic regime. Johnstone and
Nadler [97] extend this small-noise approach to other
spiked multivariate models.

Understanding the behavior of eigenprojections—
orthogonal projection operators onto the eigensubspaces—
of the sample covariance matrix, not necessarily under
the spiked covariance model, has received attention from
multiple communities. Vaswani et al. [98], [99] studied
signal recovery through PCA in a framework that allows
both nonisotropic noise and noise that are correlated with
the signal. Specifically, they considered the observation
model

Yt = Qat + MtQat + vt (11)

where Q is a p × m matrix with m � p, with Qat

denoting the random signal, while the uncorrelated noise
component vt satisfies E(Qatv

T
t ) = 0. For unknown
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p × p matrices Mt, the component MtQat represents
the component of noise that is correlated with the data.
They discussed various engineering and signal processing
applications, including PCA based on missing data. In
each case, an estimate of Q is formed by the matrix
consisting of the first r eigenvectors of the sample covari-
ance matrix of {Y1, . . . , Yn}. Assuming sub-Gaussian signal
and noise, Vaswani and Narayanamurthy [99] estab-
lished finite sample probabilistic bound for the subspace
recovery error, defined as sine of the principal angle
between the column spaces of Q and �Q. Under the spiked
covariance model, their results are analogous to those
in [42].

In related works, Koltchinskii and Lounici [100], [101]
studied the behavior of ‖�Pr − Pr‖2

2, where Pr denotes
the eigenprojection corresponding to the rth largest dis-
tinct eigenvalue of the population covariance Σ, and �Pr

is the corresponding sample eigenprojection based on
i.i.d. observations from the population, while the norm is
the Hilbert–Schmidt norm. They established the uniform
convergence of the standardized version of this quantity
to a standard normal distribution. While their work is not
within the context of the p/n → c > 0 setting, they
showed that the accuracy of the normal approximation
is characterized by the so-called “effective rank” r(Σ) :=

trace(Σ)/‖Σ‖ where ‖Σ‖ denotes the operator norm of Σ.
They also established finite sample concentration bounds
for ‖�Pr −Pr‖2

2 and nonasymptotic bounds for its expecta-
tion and variance.

The framework adopted in [100] is closely linked
with the functional principal component analysis frame-
work studied by many researchers. Without delving into
the huge literature associated with this topic, we just
mention a few works that are most relevant. Mas and
Ruymgaart [102] established nonasymptotic bounds on
the L2 risk of estimating the eigenfunctions of a covariance
operator under different regimes, including polynomial
and exponential decay of the eigenvalues of the popula-
tion covariance operator. Reiß and Wahl [103] established
nonasymptotic bounds on the expected excess empirical
risk associated with the projection of the observed data
onto the eigensubspaces associated with the leading eigen-
values. The bounds show that the excess risk differs consid-
erably from the subspace distances between the population
and sample eigenprojections.

X. C O N C L U D I N G D I S C U S S I O N

We have provided a broad overview of the key phenomena
associated with high-dimensional PCA. In this section, we
summarize some of the recent trends, and discuss some
unresolved questions, in theoretical analyses of PCA and
allied methodologies. Strikingly, this literature is charac-
terized by increasingly sophisticated utilization of tools
from random matrix theory. The research directions we
outline here are broadly categorized into three subcate-
gories: 1) extensions around high-dimensional PCA in dif-
ferent domains, including time-dependent data, variance

components modeling, and hypothesis testing involving
the covariance matrix; 2) exploration of spike phenomena
in other multivariate models; and 3) resampling-based
inference for principal components.

A. Some Extensions (Around PCA)

Time-dependent data: While traditional multivariate sta-
tistical analysis focuses on independently observed sam-
ples, much of the data in real world are intrinsically time
dependent. It is notable that PCA is routinely applied
for dimension reduction and signal detection in data
that can best be characterized as a time series. There
is a voluminous econometric literature focusing on static
factor models with time-dependent factor loadings when
p/n → 0. There is also a growing literature on dynamic
factor models (DFMs) [104]. Until recently, there were
little theoretical investigations on statistical properties of
estimators under these models when p/n → c ∈ (0,∞).
Motivated by the question of determination of the number
of dynamic factors in a DFM, Jin et al. [105] established
the existence of a limiting spectral distribution of the ESD
of symmetrized sample autocovariance matrices based on
the “null model,” i.e., when the observations are assumed
to be i.i.d. and isotropic. Liu et al. [106] extended these
results to a class of linear processes with simultaneously
diagonalizable coefficient matrices. A further relaxation on
the structure of the linear process was achieved in [107].
These results raise the prospect of extending analyses
already carried out for i.i.d. observation, such as establish-
ment of phase transition phenomena, characterization of
limiting distribution of extreme eigenvalues, establishment
of CLT for linear spectral statistics, estimation of spectra
of population covariance, to the setting of time-dependent
data. Significant progress related to phase transition phe-
nomena for singular values of sample autocovariances has
been made in [108] and [109]. A method for estimating
the joint spectrum of coefficient matrices of a class of
ARMA processes has been developed in [110]. A different
kind of phase transition phenomenon for the largest sam-
ple eigenvalues and associate eigenvectors, when the coef-
ficient matrix of an AR (1) process has low rank, has been
described in [111]. These results point to the possibility
of a rich exploration of phenomena associated with eigen-
analysis in the context of high-dimensional time series.

Multivariate variance components: We have been con-
cerned with spectral properties of data relating to a single
high-dimensional covariance matrix. In a multivariate vari-
ance components model, more than one covariance matrix
appears

X = U 1α1 + · · · + Ukαk.

Here Ur are fixed n × Ir design matrices, while the Ir

rows of αr are independently distributed as Np(0, Σr).
High-dimensional settings in which p, n and each Ir grow
proportionately are of interest, for example, in quan-
titative genetics. Spectral properties of quadratic esti-
mators Σ̂r = X ′BrX of the variance components Σr
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can be investigated: Fan and Johnstone [112], [113]
describe results for the bulk and edge eigenvalues of Σ̂r.
Work in progress by the same authors studies analogs of
the results of Sections IV and V for spiked models for
each Σr.

Tests of sphericity beyond the spiked alternative: In a
recent work, Dobriban [114] dealt with the question of
detection of directionality in high-dimensional data by
going beyond the spiked alternatives formulation. His
approach addresses the question whether it is possible to
detect weak PCs under the general covariance matrix mod-
els of [22]. He formulated the hypothesis testing problem
within the framework of a nonparametric, non-Gaussian
generalization of the spiked model. Specifically, denoting
Ep to be the empirical distribution of the eigenvalues of Σ,
this formulation boils down to testing

H0,p : Ep = (1 − h/p)E + (h/p)G0

against
H1,p : Ep = (1 − h/p)E + (h/p)G1

where E, G0, and G1 are prespecified probability distri-
butions supported on R

+, and 0 < h < p is a specified
constant. Clearly, by taking E = G0 = δ1 (degenerate
at 1), the test becomes that of testing sphericity, while
at the same time, taking h to be a fixed integer and
G1 = h−1�h

j=1 δ1+cj for positive cj ’s leads to a spiked
alternative. Dobriban [114] developed new tests based on
asymptotic Gaussianity of linear functionals of eigenval-
ues of the sample covariance matrix to detect weak PCs
under this model. A related approach to test of sphericity,
involving a correction for the likelihood ratio statistic to
compensate for the dimensionality, is discussed in [115].

B. Other Multivariate Models

PCA is only one of a whole arsenal of methods of
multivariate statistics which are based on eigenvalues and
eigenvectors of one or two sample covariance matrices.
Examples include signal detection, MANOVA and multiple
response regression, canonical correlations, discriminant
analysis and so on—these form much of the content of
textbooks on multivariate statistical analysis such as [5].
James [116] organized all these problems into a hierarchy
of five different classes (indexed by the classical hypergeo-
metric functions pFq).

The high-dimensional phenomena discussed in earlier
sections extend to the James hierarchy. For example, John-
stone and Onatski [95] and Dharmawansa et al. [96]
consider the spike testing problem. Each of James’ five
testing problems is related to the eigenvalues of E−1H
where H and E are independent and proportional to high-
dimensional Wishart matrices. Under the null hypothe-
sis, both Wisharts are central with identity covariance.
Under the alternative, the noncentrality or the covariance
parameter of H has a single eigenvalue, or a spike, that
stands alone. When the spike is larger than a case-specific

phase transition threshold, one of the eigenvalues of E−1H
separates from the bulk. This makes the alternative easily
detectable, so that reasonable statistical tests are consis-
tent, in the sense that their power converges to 1 and
a local asymptotic normality theory can be built [96].
In contrast, when the spike lies below the threshold, none
of the eigenvalues separates from the bulk, which makes
the testing problem more challenging. Johnstone and
Onatski [95] show that the measures corresponding to the
joint distributions of the eigenvalues under the alternative
and the null hypotheses are mutually contiguous when the
magnitude of the spikes are below the phase transition
threshold. Furthermore, the log-likelihood ratio processes
parametrized by the values of the spikes are asymptotically
Gaussian, with logarithmic mean and autocovariance func-
tions. These findings allow computation of the asymptotic
power envelopes for the tests for the presence of spikes in
the different multivariate models.

C. Bootstrapping High-Dimensional PCA

Resampling methods have been very popular in
statistics and machine learning due to their distribution-
free characteristics and easy applicability. In finite-
dimensional problems, under mild regularity conditions,
bootstrap techniques provide a useful alternative to (nearly
always) asymptotic inference procedures that typically
involve quantities requiring costly estimation procedures.
However, application of bootstrap techniques to high-
dimensional inference, especially in the context of PCA,
has had limited success. A succinct explanation of the
failure of standard nonparametric bootstrap methods in
the p/n → c ∈ (0,∞) setting has recently been given by
El Karoui and Purdom [117]. They also showed that, in
the case where the population covariance matrix is well-
approximated by a finite rank matrix, which corresponds
to a spiked model with much larger spiked eigenvalues
compared to the noise eigenvalues, the bootstrap performs
as well as it does in the finite-dimensional setting. In a
complementary study, Lopes et al. [118] developed a con-
sistent method for bootstrapping linear spectral statistics
of sample covariance matrices by appropriately modifying
the usual parametric bootstrap procedure. This method has
the salient feature that it allows the user to circumvent
the difficulties of complex asymptotic formulas involved
in the description of CLT for linear spectral statistics.
Development of provably consistent resampling strategies
constitutes an exciting new frontier for high-dimensional
PCA and related techniques such as MANOVA and CCA.

A P P E N D I X I
H E U R I S T I C D E R I VAT I O N F O R B I A S

We work in the simplest setting, with a single spike.
We follow, with modifications, the approach of
Nadler [42]. Assume that the observations are Gaussian,
and that population covariance matrix is diagonal, with
a single signal dimension with variance �1 > 1, so that
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Σ = diag(�1, 1, . . . , 1). In the spiked model, we can achieve
this if necessary by a population-level rotation of the
variables.

The data matrix X, by assumption, has n independent
columns, each with mean zero and covariance Σ. Now
partition

X =

�
X′

1

X′
2

�

with the first 1×n row containing the “signal” observations
with elevated variance �1, and an (p − 1) × n matrix X′

2

containing the noise variables.
Create modified data

X̃ =

�
X′

1

V′
2X

′
2

�

by rotating the noise variables by an orthogonal matrix V2

obtained from the eigendecomposition

n−1X′
2X2 = V2ΛV′

2, Λ = diag(λ2, . . . , λp).

The first row X′
1 is left alone. Note that the rotation V2 =

V2(X2) is data dependent.
In this new basis, the sample covariance has the form of

an arrowhead matrix. Indeed, with

X̃X̃
′
=

�
X′

1

V′
2X′

2

��
X1 X2V2

�
we obtain, on defining the scalar s = n−1X′

1X1 and vector
b = (b2, . . . , bp)

′ := n−1V′
2X

′
2X1 ∈ R

p−1

S̃ = n−1X̃X̃
′
=

�
s b′

b Λ

�
=

��������
s b2 · · · bp

b2 λ2

...
. . .

bp λp

�������� .

The shaft of the arrow consists of the sample noise
eigenvalues, which are of order 1 because we have nor-
malized the sample covariance matrix.

The border entries bi (the “head” of the arrow) are
much smaller, as we now show. Since Σ is diagonal and
the data Gaussian, the first row X′

1 is independent of the
noise matrix X ′

2. The entries of X1 are i.i.d. N(0, �), so we
calculate

E[b|X2] = 0

E[bb′|X2] = n−2X̃
′
2E[X1X′

1]X̃2

= n−2�X̃
′
2X̃2 = n−1�Λ.

Thus, conditional on X2, each bj has mean 0 and vari-
ance n−1�λj and so is Op(n

−1/2).
Spectrum of arrowhead matrices For an arrowhead

matrix, we can solve more or less directly for the

eigenvalues and vectors. Indeed, the equation X̃v = xv
can be written (if we normalize v by setting v1 = 1) as

s + b2v2 + · · · bpvp = x

b2 + λ2v2 = xv2

b3 + λ3v3 = xv3

...

bp + λpvp = xvp.

From the last p − 1 equations, it is immediate that

v ∝



1,
b2

x − λ2
, . . . ,

bp

x − λp

�
(12)

while the first equation reduces to the secular or character-
istic equation2

f(x) = x − s −
p�

j=2

b2
j

x − λj
= 0. (13)

Since the noise eigenvalues λj are distinct with proba-
bility one, a graph of f(x) against x shows that the sample
covariance eigenvalues xi interleave the λj

λp < xp < λp−1 < · · · < λ3 < x2 < λ2 < x1.

We can now read off the behavior of the top sample
eigenvalue from the eigenvalue equation, rewritten in the
form

x1 = s +

p�
j=2

b2
j

x1 − λj
(14)

together with the fact that s = �1 + Op(n−1/2) and the bj

have expected square of order 1/n.
If p is fixed, the contribution of the sum is negligi-

ble and the leading eigenvalue converges to � and so is
consistent

x1 = �1 + Op(n−1/2) + Op(n−1).

2Here is another route to the eigenvalue equation. We can write
S̃−xI as a rank-two perturbation of the diagonal matrix of the diagonal
matrix D = diag(s − x, λ2 − x, . . . , λp − x)

S̃ − xI = D + [e1 b]

�
b′
e′
1

�

where, with slight abuse of earlier notation, now b′ = (0 b2 . . . bp) and
e′
1 = (1 0 . . . 0). Apply the matrix determinant lemma |D + UV′| =

|D||I +V′D−1U|: the diagonal entries of V′D−1U vanish because
of the zero pattern in b and e1, hence

|I+V′D−1U| =

���� 1 b′D−1b
e′
1D

−1e1 1

����=1− 1

s − x

p�
j=2

b2j

λj − x
.

Equivalently, the eigenvalues xi solve the secular equation (13).
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However, everything changes if p/n → γ > 0. Recalling
the behavior when we condition on the noise variables X2,
we have

E(s|X2) = � E(b2
j |X2) =

�

n
λj .

Proceeding heuristically, the sum on j in (14) now looks
like an empirical average of a function of the noise eigen-
values λi

x1 ≈ E[x1|X2] = � + �
p

n
· 1

p

p�
j=2

λj

x1 − λj
.

Since the empirical distribution of the sample λj converges
to Marčenko–Pastur, it is plausible and can be shown
that as p/n → γ, the largest eigenvalue x1 converges to
a limit λ(�) which satisfies the equation

λ(�) = � + �γ

�
λ

λ(�) − λ
dF MP

γ (λ). (15)

While the integral can certainly be evaluated directly, it
is instructive to consider an alternative indirect approach.
The Stieltjes transform of a probability measure, in this
case the Marčenko–Pastur law, is defined by

m(z) =

�
dF MP

γ (λ)

λ − z
, z ∈ C

+

and is known [51] to satsify the quadratic equation

γzm2(z) + (z + γ − 1)m(z) + 1 = 0. (16)

Equation (15) can be rewritten using the Stieltjes trans-
form as

�γλm(λ) = � − �γ − λ (17)

where we abbreviate λ = λ(�). Evidently, we may sub-
stitute the latter equation into the former, evaluated at
z = λ(�). When the resulting equation is viewed as a
(quadratic) polynomial in λ, it turns out that the constant
term vanishes, and so one arrives at the evaluation

λ(�) = � +
�γ

� − 1
. (18)

Thus, above the phase transition at 1+
√

γ, the bias is given
by γ�/(�−1). So the bias is always at least γ, no matter how
large the top population eigenvalue is.

A P P E N D I X I I
H E U R I S T I C D E R I VAT I O N F O R
E I G E N V E C T O R I N C O N S I S T E N C Y

Recall that by assumption the top population eigenvector
u1 = e1. Using the explicit form found in (12), one easily
calculates the cosine between population and sample as

cos2 α =
〈v, e1〉2
‖v‖2

=
1

1 + T 2
, T 2 =

p�
j=2

b2
j

(x1 − λj)2
.

(19)
When p is fixed, there are a finite number of terms each
of order 1/n, so cos2 α → 1 and the sample eigenvector is
consistent.

However, when p is large and proportional to γn, then
T 2 converges to a positive constant

T 2 → � γ

�
λ

[λ(�) − λ]2
dFγ(λ) > 0.

An easy way to evaluate this integral is to observe from
(15) and (18) that�

λ

λ(�) − λ
dFγ(t) =

1

� − 1
.

Differentiating with respect to �, we obtain

λ′(�)
�

λ

(λ(�) − λ)2
dFγ(λ) =

1

(� − 1)2
.

From (18), λ′(�) = 1 − γ/(� − 1)2. Substituting into (19),
we find that

cos2 α →

���
1 − γ/(� − 1)2

1 + γ/(� − 1)
� > 1 +

√
γ

0 � ≤ 1 +
√

γ.
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[22] V. A. Marčenko and L. A. Pastur, “Distribution of
eigenvalues for some sets of random matrices,”
Math. USSR-Sbornik, vol. 1, no. 4, pp. 507–536,
1967.

[23] J. W. Silverstein and Z. D. Bai, “On the empirical
distribution of eigenvalues of a class of large
dimensional random matrices,” J. Multivariate
Anal., vol. 54, no. 2, pp. 175–192, 1995.

[24] J. W. Silverstein, “Strong convergence of the
empirical distribution of eigenvalues of large
dimensional random matrices,” J. Multivariate
Anal., vol. 55, no. 2, pp. 331–339, Nov. 1995, doi:
doic 10.1006/jmva.1995.1083.

[25] E. P. Wigner, “Characteristic vectors of bordered
matrices with infinite dimensions,” Ann. Math.,
vol. 62, no. 3, pp. 548–564, 1955.

[26] C. M. Stein, “Multivariate analysis I,” Dept. Stat.,
Stanford Univ., Stanford, CA, USA, Tech. Rep. OLK
NSF 42, 1969. [Online]. Available:
https://statistics.stanford.edu/resources/
technical-reports

[27] J. Baik, G. Ben Arous, and S. Péché, “Phase
transition of the largest eigenvalue for nonnull
complex sample covariance matrices,” Ann.
Probab., vol. 33, no. 5, pp. 1643–1697, 2005.

[28] K. Johansson, “Shape fluctuations and random
matrices,” Commun. Math. Phys., vol. 209, no. 2,
pp. 437–476, 2000.

[29] N. El Karoui. (2003). “On the largest eigenvalue
of Wishart matrices with identity covariance when
n, p and p/n tend to infinity.” [Online]. Available:
https://arxiv.org/abs/math/0309355

[30] C. A. Tracy and H. Widom, “Level-spacing
distributions and the Airy kernel,” Commun. Math.
Phys., vol. 159, no. 1, pp. 151–174, 1994.

[31] C. A. Tracy and H. Widom, “On orthogonal and
symplectic matrix ensembles,” Commun. Math.
Phys., vol. 177, no. 3, pp. 727–754, 1996.

[32] A. Bloemendal and B. Virág, “Limits of spiked
random matrices I,” Probab. Theory Rel. Fields, vol.
156, nos. 3–4, pp. 795–825, 2013.

[33] J. Baik and J. W. Silverstein, “Eigenvalues of large
sample covariance matrices of spiked population
models,” J. Multivariate Anal., vol. 97, no. 6, pp.
1382–1408, Jul. 2006.

[34] D. Paul, “Asymptotics of sample eigenstructure for
a large dimensional spiked covariance model,”
Stat. Sinica, vol. 17, no. 4, pp. 1617–1642, 2007.

[35] J. Yang and I. Johnstone, “Edgeworth correction
for the largest eigenvalue,” Stat. Sinica, to be
published.

[36] M. C. Harding, “Explaining the single factor bias
of arbitrage pricing models in finite samples,”

Econ. Lett., vol. 99, no. 1, pp. 85–88, Apr. 2008.
[Online]. Available:
http://www.sciencedirect.com/science/article/
pii/S0165176507002169

[37] S. J. Brown, “The number of factors in security
returns,” J. Finance, vol. 44, no. 5, pp.
1247–1261, 1989.

[38] A. Y. Lu, “Sparse principal components analysis for
functional data,” Ph.D. dissertation, Stanford
Univ., Stanford, CA, USA, 2002.

[39] I. M. Johnstone and A. Y. Lu (2009). “Sparse
principal components analysis.” [Online].
Available: https://arxiv.org/abs/0901.4392

[40] M. Biehl and A. Mietzner, “Statistical mechanics of
unsupervised structure recognition,” J. Phys. A,
Math. General, vol. 27, no. 6, pp. 1885–1897,
1994.

[41] D. C. Hoyle and M. Rattray,
“Principal-component-analysis eigenvalue spectra
from data with symmetry-breaking structure,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, p. 026124, Feb. 2004.

[42] B. Nadler, “Finite sample approximation results
for principal component analysis: A matrix
perturbation approach,” Ann. Stat., vol. 36, no. 6,
pp. 2791–2817, 2008.

[43] X. Mestre, “On the asymptotic behavior of the
sample estimates of eigenvalues and eigenvectors
of covariance matrices,” IEEE Trans. Signal
Process., vol. 56, no. 11, pp. 5353–5368, Nov.
2008.

[44] F. Benaych-Georges and R. R. Nadakuditi, “The
eigenvalues and eigenvectors of finite, low rank
perturbations of large random matrices,” Adv.
Math., vol. 227, no. 1, pp. 494–521, May 2011.

[45] F. Benaych-Georges and R. R. Nadakuditi, “The
singular values and vectors of low rank
perturbations of large rectangular random
matrices,” J. Multivariate Anal., vol. 111, pp.
120–135, Oct. 2012.

[46] F. Benaych-Georges, A. Guionnet, and M. Maïda,
“Large deviations of the extreme eigenvalues of
random deformations of matrices,” Probab. Theory
Rel. Fields, vol. 154, nos. 3–4, pp. 703–751, Dec.
2012.

[47] S. Jung and J. S. Marron, “PCA consistency in
high dimension, low sample size context,” Ann.
Stat., vol. 37, no. 6B, pp. 4104–4130, 2009.

[48] D. Shen, H. Shen, H. Zhu, and J. S. Marron, “The
statistics and mathematics of high dimension low
sample size asymptotics,” Stat. Sinica, vol. 26, no.
4, pp. 1747–1770, 2016.

[49] J. Fan, Y. Liao, and M. Mincheva, “Large
covariance estimation by thresholding principal
orthogonal complements,” J. Roy. Stat. Soc. Ser. B,
Stat. Methodol., vol. 75, no. 4, pp. 603–680, 2013.

[50] W. Wang and J. Fan, “Asymptotics of empirical
eigenstructure for high dimensional spiked
covariance,” Ann. Stat., vol. 45, no. 3, pp.
1342–1374, 2017.

[51] Z. Bai and J. W. Silverstein, Spectral Analysis of
Large Dimensional Random Matrices. New York,
NY, USA: Springer-Verlag, 2010.

[52] A. Soshnikov, “A note on universality of the
distribution of the largest eigenvalues in certain
sample covariance matrices,” J. Stat. Phys., vol.
108, no. 5, pp. 1033–1056, 2002.

[53] S. Péché, “Universality results for the largest
eigenvalues of some sample covariance matrix
ensembles,” Probability Theory Rel. Fields, vol.
143, nos. 3–4, pp. 481–516, 2009.

[54] J. Baik and J. W. Silverstein, “Eigenvalues of large
sample covariance matrices of spiked population
models,” J. Multivariate Anal., vol. 97, no. 6, pp.
1382–1408, 2006.

[55] Z. Bai and J.-F. Yao, “Central limit theorems for
eigenvalues in a spiked population model,” Ann.
l’Inst. Henri Poincaré-Probabilités Statstiques, vol.
44, no. 3, pp. 447–474, 2008.

[56] Z. Bai and J.-F. Yao, “On sample eigenvalues in a
generalized spiked population model,”
J. Multivariate Anal., vol. 106, pp. 167–177, Apr.
2012.
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