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A B S T R A C T

Hierarchical binary classifiers are often used for multiclass problems when the number of classes is significantly
more. The hierarchical structure suffers from a decrease in detection probability when there is an increase in
the number of layers and classes. The order and the choice of classifier used in individual blocks of the
hierarchical structure affect the overall probability of detection. In this paper, Ant Colony Optimization (ACO)
is proposed to optimize the order of the classifier block at each level. It is also proposed to assign a suitable
classifier model for the individual classifier block at each level to maximize the overall probability of detection.
The proposed techniques also use an Adaptive boosting (Adaboost) classifier model (weighted average of the
constructed classifier) as an alternative approach instead of fixing one classifier model at each classifier block
and optimizing the classifier block’s order using ACO. The description using the probability of false negative
(miss → 𝑝𝑀 ), and the probability of false positive (false alarm → 𝑝𝐹 ) gives the characteristics of the individual
classifier blocks in the hierarchical structure. Monte carlo simulation is performed by randomly assigning
values for 𝑝𝑀 and 𝑝𝐹 . It was found that the overall detection rate is consistently increasing using the proposed
method for various attempts made in the Monte carlo simulation. The performance of the optimized binary
hierarchical structures obtained using the proposed technique for the Engine vibration data with 42 classes
and 53 block classifiers are compared with the default hierarchical structure. It was observed that there has
been a significant improvement in the overall detection rate from 87.235% using the default structure (with
Random forest ensemble to classify all classes in the hierarchy) to 90.92% using the proposed technique (ACO
with Adaboost). The proposed technique can be used for applications that demand hierarchical, multi-level
classifications.
1. Introduction

Most researchers focus on hierarchical classification to deal with
the multiclass classification problem. Generally, hierarchical structure
can be either Tree or a Directed Acyclic Graph. Predicting a single
class label in a hierarchical structure is a path from the root node
to the indicated leaf node at different hierarchy levels. This class
hierarchy can be incorporated for better performance when learning
a classification model for a hierarchical classification problem (Carlos
et al., 2010; Salabat et al., 2017).

The existing hierarchical classification methods are either local (top-
down) and global (big bang). The difference is that in local method, it
trains more than one classifier in a hierarchical structure. The global
method is used when the leaf node belongs to more than one parent
node. If the number of classes is decreased or increased in the hier-
archy, the entire model needs to be reconstructed. The local method
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has three standard ways to build a classifier for multiclass problems.
They are local classifier per node(LCN), local classifier per parent
node(LCPN) and local classifier per level(LCL) (Carlos et al., 2010;
Defiyanti et al., 2019; Fogli et al., 2020; Marwa et al., 2020; Ricardo
et al., 2014; Roger et al., 2019; Wei & James, 2014).

In the case of LCN, a binary classifier is built for each hierar-
chy node in the training phase. In LCPN, the multiclass classifier
is constructed at each parent and root node. In LCL, the multiclass
classifier is constructed at each hierarchy level. The common weakness
in these techniques is they face inconsistent prediction and blocking
problems (Fafa et al., 2014; Ricardo et al., 2014; Salabat et al., 2017;
Singhal et al., 2020; YaoweiShi et al., 2022; Zulfiqar & Waseem, 2018).
This problem may be because each classifier node uses the same classifi-
cation algorithm in the traditional top-down hierarchical classification
method. This method appears less effective because each classifier
vailable online 27 September 2023
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node is an individual classification problem or a distinct training set
associated with a different set of classes for prediction.

The authors (Fafa et al., 2014; Jianming et al., 2019; Nicholas &
Alex, 2008; Victor & Rodrigues, 2018) suggested improving the clas-
sifier tree’s prediction accuracy by selecting the best classifier at each
node from a predefined list of classifiers in the classification algorithms.
Ant colony optimization (ACO) is commonly used to select the classifier
in a hierarchy structure. ACO is derived from ants choosing the shortest
route to reach their destination. When the ants move, they secrete a
chemical component known as a pheromone. The following ants decide
to continue moving forward based on the higher concentration of the
pheromone (Dorigo et al., 2006; Gopi, 2020). ACO uses this analogy to
select the selection rule for each node in a hierarchical structure.

The authors (Victor & Rodrigues, 2018) used a hierarchical Ant
Colony (HAC) algorithm for simultaneous classifier selection and hyper-
parameter optimization. HAC is a metaheuristic algorithm that employs
multiple ant colonies to search for optimal classifier and hyperparame-
ter combinations. The algorithm uses a hierarchical structure to balance
exploration and exploitation during the search process. They used two
objective functions: one of them is mean classification accuracy to
primarily guide the search, and the other one is an AUC (area under
the receiver operating characteristic) as a tiebreaker (presence of more
than one search objective).

The authors (Salabat et al., 2017) focused on the global method of
hierarchical classification using ACO, where the leaf node has more
than one parent node. In this technique, a set of classifier rules are
optimized using ACO to classify the multiclass in the hierarchy. They
use the Euclidean distance and variance in the class label space to guide
the ants in the right direction.

In this paper (Gunaseelan et al., 2018), the authors use ACO in flat
binary classification to choose the order in which the SVM classifier
block needs to be cascaded to improve the classification rate in two
class problems.

The authors (Nicholas & Alex, 2008) proposed to use a hybrid
method of both PSO and ACO algorithms to select the best classifier
at each node of the hierarchy, which improves the performance of
hierarchical classification. In this algorithm, the population of particles
and the pheromone vectors are used to determine the best value of a
nominal attribute in each dimension of the problem’s search space.

In summary, the existing methods deal with ACO to find the best
classifier and the best classifier rule to improve the classification per-
formance in the case of multiclass classification in a hierarchical struc-
ture. The fitness function used in previous work for ACO is the mean
classification accuracy across all the class levels.

The proposed work involves implementing a binary classifier (from
root to leaf node) in a hierarchical structure instead of using multi-
class classification in the hierarchy, which deals with the individual
classification problem associated with a different set of classes for
prediction. Our case study adopts a local method to demonstrate the
proposed algorithm, as the leaf node belongs to only one root node
in the considered hierarchical structure. Two techniques (based on
ACO) are proposed to improve the overall probability of detection
and the probability of detection even at the deepest classes of the
hierarchy level with multiclass problems. The fitness function uses 𝑝𝐹
and 𝑝𝑀 , new to the current research work for multiclass problems in a
hierarchical classification. ACO is also used to select the best classifier
model from the predefined list of models and the order arrangement
simultaneously (Proposed technique 1). The proposed technique also
uses an adaptive boosting algorithm as a classifier model (instead of
selecting one best classifier model, combining all the weak classifier
models into a stronger classifier model for each block classifier) with
order rearrangement using ACO (Proposed technique 2).

The proposed work involves experiments with Monte carlo simu-
ation for various runs and is demonstrated with an engine vibration
ataset. With the benchmark dataset, the imbalance class, which affects
2

he classifier performance, is handled by the autoencoder instead of
using a traditional oversampling or undersampling method, which lacks
useful information while compressing or expanding the data. With
the machinery fault database, a new attempt was made to classify all
the faults from the root to the leaf node. The comparison results of
proposed techniques 1 and 2 are summarized in Section 5.

The experimental data set used in our paper is the machinery
fault database (Ali et al., 2019; Mafaulda, 0000; Pestana Viana et al.,
2016) which has a default hierarchical classification structure. In fault
classification of vibration data, most researchers have classified only
significant faults (primary first-level faults) in the engine but failed to
organize the subclass from the root node. The secondary-level engine
fault classification is also considered in our proposed method. The
description of the data set used is described in Section 2. There is
an unequal distribution of sample counts in each class, and the clas-
sifiers usually perform poorly in minority classes (Aref et al., 2021;
Muhammet et al., 2014). This class imbalance problem is a severe
issue that impairs classification performance (Dong & Lili, 2022; Jia
et al., 2021; Neema & Gopi, 2021; Xu et al., 2017; YaoweiShi et al.,
2022; Zhiqiang et al., 2017). Our proposed technique employs an
autoencoder to handle the imbalanced classes in the machinery fault
dataset. In the proposed method, a comparative study is given on
using the best classifier model with optimized order at each block
classifier and combining all the classifier models using Adaboost with
optimized classifier order. The proposed technique improves the overall
classification performance and makes the defect detection approach
more appropriate even in the deepest class level in the hierarchy.

The main contributions of this paper are as follows.

1. ACO-based algorithm to obtain the hierarchical binary structure
to improve the overall detection rate.

2. Closed-form expression for computing the overall detection rate
of the arbitrary hierarchical binary classifier structure is ob-
tained.

3. The performance of the proposed technique is analyzed using the
Monte carlo simulation.

4. Demonstration of the proposed technique using engine vibra-
tion data with 53 classifier blocks and 42 classes at each block
classifier is minimized.

The rest of the paper is as follows. Section 2 describes the problem
formulation of the proposed methodology. The description of the pro-
posed method is in Section 3. Section 4 gives an analysis using Monte
carlo simulation. Section 5 summarizes the experiments performed and
the proposed methodology’s results. The conclusion is discussed in
Section 6.

2. Problem formulation

Given: An input data set of multiclass with a default hierarchical
structure in the form of a tree. The goal is to rebuild the hierarchical
structure by finding the best classifier order and model using 𝑝𝐹 and 𝑝𝑀
at each block classifier to maximize the overall probability of detection.

Hierarchical structure based on open-source (Mafaulda, 0000) ma-
chinery fault dataset is adopted and used as the default hierarchical
order to analyze the performance of the proposed methodology using
Monte carlo simulation. We use the data set further to demonstrate
the real-time usage of the proposed techniques. The details regarding
the machinery fault dataset and the default hierarchical structure are
summarized below.

The engine under test is subjected to rotation with constant rotation
speed (rpm), and the sampled version (sampling frequency 50 kHz)
of the signal (frequency ranges from 20 to 20, 000 Hz) is obtained
for 5 s. In the proposed technique, classifier models with the least
probability of false positives and the probability of false negatives are
chosen. The selection threshold is 0.2 based on the observation of the

performance of all the classifiers considered. The eight sensors used are
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Fig. 1. Default hierarchical classification structure of machinery fault database. The numbers in each block indicate the class label. In the blocks, mm and 𝑔 indicate millimeter
and gram, respectively.
as follows: Three Industrial IMI sensors(Model 601𝐴01 accelerometers),
one IMI sensors triaxial accelerometer(Model 604𝐵31, which are in
the radial, axial, and tangential directions), two accelerometer sensors
(National Instruments NI 9234 4 channel analog acquisition modules
with a sample rate of 51.2 kHz), one Monarch Instrument MT-190
analog tachometer, and one Shure 𝑆𝑀81 microphone.

The machinery fault simulator collects several samples at a fixed
rotation speed. We formulate the dataset by calculating each sensor
outcome’s mean values and the corresponding rpm used as the feature
vector associated with the corresponding class label. The data collected
in the database is 1951, feature vectors of different classes with varying
rpm ranging between 737.28 to 3686.4. Since there is an imbalance of
data in some classes compared with others, data augmentation using
the Autoencoder-based Gaussian Mixture Model to balance the skewed
data set is performed. The database has 53 types of fault diagnosis,
3

including root, branch, and leaf nodes subjected to the multiclass
classification problem. The default hierarchical order for the multiclass
is constructed as given in Fig. 1 by dividing the classes into three levels
in the hierarchy structure.

2.1. Objective function

Each block in the hierarchical structure is the binary classifier
constructed using the following classifier models. (a) Logistic regres-
sion (b) Support vector machine (c) Naive Bayes (d) Random forest
ensemble(𝑀1) (e) Decision tree(𝑀2) (f) Gradient Boosting(𝑀3) (g) K-
Nearest Neighbor(KNN) (𝑀4) (h) Multilayer Perceptron(𝑀5). In our
proposed technique, among these eight classifier models, the classifier
models that give the least 𝑝 and 𝑝 i.e., d, e, f, g, h are chosen. It is
𝑀 𝐹
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observed that 𝑝𝑀 and 𝑝𝐹 are lesser than 0.2 for the selected classifier
models.

Let the classifier models chosen be represented as 𝑀1, 𝑀2, 𝑀3,
𝑀4, and 𝑀5. The best parameters for all Classifier blocks with the
augmented data set are selected using K-fold cross-validation. After
training each block with a different model, we calculate 𝑝𝐹 and 𝑝𝑀 for
each block (53 block classifiers) using validation data. The requirement
is to rearrange the blocks in the individual classifier blocks under var-
ious levels (with the individual blocks constructed with the particular
classifier model) to maximize the overall probability of detection (𝑝𝑑)
as given below.

𝑝𝑑 = 1
42

𝑖=53
∑

𝑖=1,𝑖∈𝑅
𝑝𝑘𝑖 (𝑖∕𝑖) (1)

where, i ∈ integer, R ← root to leaf node classifier in the hierarchical
structure that does not have further branches. 𝑝𝑘𝑖 (𝑖∕𝑖) is the probability
of sample data actually belonging to 𝑖th class is declared as 𝑖th class
(probability of detection) by the constructed hierarchical classifier with
𝑖th classifier block constructed using 𝑘𝑖𝑡ℎ model. It is noted that the
classifier indices are fixed based on the default hierarchical structure
(Fig. 1). Let 𝑝𝑘𝑖 (≠ 𝑖∕𝑖) be the probability of sample data actually
belonging to 𝑖th class is not declared as 𝑖th class (probability of detec-
tion) by the constructed hierarchical classifier with 𝑖th classifier block
constructed using 𝑘𝑖𝑡ℎ model. It is observed that 𝑝𝑘𝑖 (≠ 𝑖∕𝑖)+ 𝑝𝑘𝑖 (𝑖∕𝑖) = 1
for all i ∈ to the root-to-leaf node (R). The root-to-leaf nodes are listed
below: 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, and 53. The closed-form expression for computing
the overall probability of detection given the hierarchical structure
with the particular model assigned to the individual classifier is given
in Appendix. The assignment of the models for the individual blocks
and the arrangement of blocks in the individual classifier blocks are
optimized using the proposed ACO-based algorithm (refer to Section 3).

3. Proposed methodology using ACO

ACO is a famous meta-heuristic proposed by Dorigo et al. (2006)
in the early 90’𝑠. Based on its learning style, it is considered a suitable
strategy for solving complex combinatorial optimization problems. The
motivation for ACO comes from the ant’s approach of finding the
shortest path to reach the destination. Using this analogy, ACO tech-
nique was developed, which determines the order at each hierarchical
classification level.

The summary of the algorithm used to obtain the classifier block
order and the classifier model assignment that maximizes the overall
𝑝𝑑 is given in Algorithm 1. The typical pheromone matrix used for
assigning classifier models to the individual classifier blocks is given
in Fig. 2(a). The pheromone matrix used to set classifier block orders
of the respective levels is given in Fig. 2(b).

The description of constructing the pheromone matrix is as follows:
Initialize the default order in which the blocks are arranged. Compute
the corresponding cost function by initializing the path of the n ants.
The pheromone matrix PM (with size 𝑁 ×𝑁) is initially formulated by
filling up with zeros. Let 𝑖 be the number of class indexes and 𝑗 be the
number of classifier blocks or models used at each level. For the typical
ant’s path, if 𝑗th position of the path has the value 𝑖, then the (𝑖, 𝑗)𝑡ℎ
position of the pheromone matrix is said to be active. The functional
value of the 𝑖th ant’s path updates the active positions of the PM. Now
the updated pheromone matrix is generated(each ant is described with
the vector with 𝑁 element, with each element filled up with a distinct
number between 1 and 𝑁). The above procedure is repeated n times to
obtain the path of n ants.

Finally, the ant’s path corresponding to the maximum value in every
iteration is collected, and the best among the final path is declared
as the final optimal path. The complete procedure of ACO is given in
Algorithms 1 and 3.
4

3.1. Finding the best fit of classifier block order and classifier model using
ACO

Algorithm 1 Ant Colony Optimization for Classifier Selection
Require: Number of ants 𝐧, evaporation factor 𝛼, maximum number

of iterations 𝐦𝐚𝐱_𝐢𝐭𝐞𝐫
Ensure: Optimal classifier model 𝐌 and classifier block order 𝐎

assignment
1: Initialize the pheromone matrix 𝐏𝐌 as a zero matrix.
2: Initialize the classifier block order 𝐎 of the first, second, and third

levels in a hierarchical structure.
3: Assign the classifier model 𝐌 for the individual classifier blocks.
4: Compute the overall probability of detection 𝑝𝑑
5: Update the corresponding elements of the pheromone matrix 𝑃

with +𝛼 × 𝑝𝑑
6: while the maximum probability of detection has not been reached
do

7: Generate new sets of 𝐌 and 𝐎 assignments using the updated
pheromone matrix 𝐏𝐌.

8: Compute the overall probability of detection 𝑝𝑑
9: Update the corresponding elements of the pheromone matrix 𝑃

with +𝛼 × 𝑝𝑑
10: end while
11: return Optimal classifier model and classifier block order assign-

ment

3.2. Algorithm of training each block with a combination of five different
models

Algorithm 2 Adaboost.
1: Input: Training data 𝐗 = (𝑥1, 𝑡1), (𝑥2, 𝑡2), ..., (𝑥𝑁 , 𝑡𝑁 ) where 𝑥𝑁 is the

𝑁𝑡ℎ sample and 𝑡𝑖 ∈ 0, 1 is its label. 𝑦𝑚(𝑥), ∀𝑚 = 1⋯ 5
2: Output: A classifier 𝑦𝑎(𝑥) that predicts the label of a new sample 𝑥.

𝑦𝑎(𝑥) = 1 for correct classification and 0 for mis-classification
3: Initialize: Set the weights of each training sample to be equal:

𝑤(1)
1 = 𝑤(1)

2 = ... = 𝑤(1)
𝑁 = 1

𝑁 .

4: for 𝑚 = 1 to 5 do
5: Compute 𝑦𝑚(𝑥𝑛) on the training data. ∀𝑛 = 1⋯𝑁 .
6: 𝑦𝑚(𝑥𝑛) = 1 for correct classification and 𝑦𝑚(𝑥𝑛 = 0 for

mis-classification
7: Calculate the error rate of the 𝑚𝑡ℎ weak classifier :

𝜖𝑚 =
∑𝑁

𝑛=1 𝑤
(𝑚)
𝑛 𝐼(𝑦𝑚(𝑥𝑛)≠𝑡𝑛)

∑𝑛
𝑛=1 𝑤

(𝑚)
𝑛

.

𝐼(𝑦𝑚(𝑥𝑛) ≠ 𝑡𝑛) is the indicator that takes 1 if 𝑦𝑚(𝑥𝑛) ≠ 𝑡𝑛
𝛼𝑚 = log

(

1−𝜖𝑚
𝜖𝑚

)

.

8: Update the weights of the training samples:

𝑤(𝑚+1)
𝑛 = 𝑤(𝑚)

𝑛 𝑒−𝛼𝑚𝐼(𝑦𝑚(𝑥𝑛)≠𝑡𝑛 ) ∀𝑛 = 1⋯𝑁

9: Normalize the weights: 𝑤(𝑚+1)
𝑛 ←

𝑤(𝑚+1)
𝑛

∑𝑛
𝑖=1 𝑤

(𝑚+1)
𝑖

.

0: end for
1: Output: The final classifier 𝑦𝑎(𝑥) = sign

(

∑𝑀
𝑚=1 𝛼𝑚𝑦𝑚(𝑥)

)

.

In the proposed method 2, ACO is adopted to find the order of
arrangements of the classifier block in each level (refer Algorithm
1) with the classifier used in each block is obtained by combining
the various classifying models using Adaboost. Adaboost algorithm

(refer Algorithm 2) is a machine learning algorithm that combines
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Fig. 2. (a) and (b) (refer Section 2 for details).
weak learners to improve the overall performance of the constructed
classifier (Youwei & Lizhou, 2021).

Let 𝑥𝑛 and 𝑡𝑛 ∀𝑛 = 1⋯𝑁 be the training data and the corresponding
label for constructing the binary classifier. 𝑁 indicates the number of
training samples. 𝑡𝑛 takes the value either 1 or 0. Let 𝑦𝑚(𝑥) be the 𝑚th
weak classifiers with 𝑚 = 1⋯𝑀 constructed individually using the
identical training set. 𝑦𝑚(𝑥) take the value 1 if the vector 𝑥 belongs to
class 1, else 0 if belongs to class 2. Let 𝑤𝑛 ∀𝑛 = 1⋯𝑁 be the weights
assigned to the individual training data, which is initialized as 1

𝑁 . The
values 𝑦1(𝑥𝑛) obtained for all the training data along with the 𝑡𝑛 and
𝑤𝑛 are used to compute error rate of the 1st weak classifier as 𝜖1. It is
further used to obtain the co-efficient 𝛼1. It is further used to update the
weights 𝑤𝑛 ∀𝑛 = 1⋯𝑁 . Using the latest weights and the corresponding
𝑦2(𝑥𝑛), 𝑡𝑛 are used to compute the error rate 𝜖1 and the co-efficient 𝛼2
for the second weak classifier. It is repeated to obtain the coefficients
for all weak classifiers, and hence the combined classifier is obtained as
𝑦𝑎(𝑥) = 𝑠𝑖𝑔𝑛(

∑𝑚=𝑀
𝑚=1 𝛼𝑚𝑦𝑚(𝑥)). The estimated weights (𝛼𝑚 in Algorithm 2)

depend upon the order of the models chosen in the algorithm. Hence
we explored all possible combinations (5! = 120 combinations) of 5
classifiers for each block. The best combination in each block was
picked and implemented based on accuracy.

3.3. Handling imbalance class using autoencoder

Autoencoder-based data augmentation is adopted to generate aug-
mented engine vibration data as described below.

The original dataset consists of 1951 samples corresponding to 42
classes. In the dataset, 50% of the data is for training, and the remain-
ing is for testing. Using 977 training samples, the augmented data is
generated using an autoencoder. The autoencoder with 9 neurons in
the input, 2 neurons in the hidden layer, and 9 in the output layer are
constructed. Auto-associative training using the constructed model is
performed. Two-dimensional vectors corresponding to the hidden layer
output are collected and are used to build Gaussian Mixture Model
(GMM) with two mixtures. The sample outcomes of the constructed
GMM model are treated as the augmented data. Augmented data gen-
eration is such that each block in the first level of the hierarchical
structure consists of 1200 samples with an equal number of samples in
the corresponding subblocks. Thus 7200 samples are used to construct
the classifiers. An illustration of original data and the augmented data
5

obtained using a GMM-based autoencoder is given in Fig. 3. Based on
the case study (Ali et al., 2019), with the machinery fault database
before and after augmentation shows the importance of handling the
imbalance class and improvement in classification performance. Since
some classes have limited datasets (refer Fig. 1), with this dataset,
building the individual block classifier using the classifier model is chal-
lenging, it is found that the maximum detection rate for the individual
class has increased from 94.2% to 100% with various classification
models when data augmentation are used. The training and testing
model’s performance is shown in Fig. 7, Fig. 8 and Fig. 11 with the
augmented dataset.

3.4. Experimental setup

The experimental setup for the proposed work is shown in Fig. 4.
It involves the data pre-processing (refer to Section 2) to obtain the
standardized data set. After standardization, divide the dataset into
two parts 50% is for training and 50% for testing. The training data
set is divided into two parts, 80% training, and 20% validation. The
dataset consists of a 53 block classifier with 42 root-to-leaf node class
indices and three levels in a hierarchical classification structure. In
method 1, the hierarchical structure is constructed with binary block
classifiers with each classifier block trained using one of the five
classification models using training data. In method 2, the hierarchical
structure is constructed with binary block classifiers with each classifier
block trained using combinations of five classification models using
Adaboost for the training data. The individual-trained classifier blocks
are validated using validation data. 𝑝𝑀 and 𝑝𝐹 are calculated using the
validation data. Based on the probability of false negative and false
positive, ACO is used to find the best order with the optimal model and
the best order with the Adaboost model. The final hierarchical structure
thus obtained is tested using the test data.

4. Analysis using Monte carlo simulation

Monte carlo simulations are performed to demonstrate the consis-
tent improvement of the detection rate using the proposed technique.
The first case uses the randomly generated 𝑝𝐹 and the 𝑝𝑀 for 53 block
classifiers to optimize the order and the model assignment using the

proposed ACO that maximizes the overall probability of detection.
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Fig. 3. Illustration of original and the augmented data for the class label (34) using Autoencoder. Each color indicates the distinct elements of the feature vector. Samples from 1
to 30 show the original samples, and 31 to 500 display the augmented data.
It compares the probability of detection attained using the default
structure with the identical classification method assigned to all the
blocks. In the second case, the Monte carlo simulation uses the ran-
domly generated sequence of the class index (outcome of the discrete
random variable that takes the values ∈ root to leaf classifier indices).
The Monte carlo simulation mimics the classification of the individual
testing data using the constructed classifier. Simulation steps to classify
the arbitrary class label 𝑖 (say) into one among the root classes using
the hierarchical classifiers with the specific 𝑝𝐹 and the probability of
detection assigned to the individual classifiers (Fig. 1) are summarized
in Algorithm 3.

For the Monte carlo simulation, the sequence of class indices that
are given as the input to the hierarchy classifier is assumed to be
the outcomes of the random variable that are uniformly distributed
among the root-to-leaf node indices. These are used to mimic the real-
time training and testing data. The typical values for 𝑝𝐹 and 𝑝𝑀 for
the individual blocks are obtained as the outcome of the uniformly
distributed random variable ranging from 0.0003 to 0.3 (arbitrarily
chosen to demonstrate the proposed technique). The sample belonging
to the 𝑖th class is correctly declared as 𝑖th class by the 𝑖th binary
classifier block (with 𝑝𝑀 ) if the outcome of the uniformly distributed
random variable (between 0 to 1) is greater than 𝑝𝑀 . Similarly, samples
not belonging to the 𝑖th class are declared as 𝑖th class by 𝑖th binary
classifier block (with 𝑝𝐹 ) if the outcome of the uniformly distributed
random variable (between 0 to 1) is lesser than 𝑝𝐹 .

Figs. 5 and 6 gives a comparison of the probability of detection
attained using a different technique for 100 Runs (Monte carlo simu-
lation). It is found that the ACO with the optimal order and model
outperforms in all the runs compared with the default structure with
the identical classifier model at all nodes.

Fig. 5 shows the overall probability of detection (computed using 𝑝𝐹
and 𝑝𝑀 of the individual blocks for the particular hierarchical struc-
tures) using various techniques). Fig. 6 shows the overall probability
of detection using the randomly generated sequence of the class index
(with length 1000) to mimic the classification of the individual testing
data using various techniques.
6

Algorithm 3 Algorithm to classify the arbitrary class label 𝑖 (say) ∈
root to leaf node using the hierarchical classifiers.
1: Generate 𝑟: Generate the outcome of the random variable that is

uniformly distributed between 0 to 1. Let it be 𝑟.
2: Identify the first-level and second-level indices for the given class

label index 𝑖 (E.g. If the input index is 30, the first-level index is 5,
and the second-level index is 2. Let it be 𝑓 and 𝑠.

3: for j=1 to 5 do
4: if 𝑓 ≠ 𝑗 then Generate 𝑟
5: if 𝑟 > (1 − 𝑝𝐹𝑘𝑗 ) then
6: Declare the input classifier index as 𝑗, where 𝑝𝐹𝑘

represents probability of false positive. Exit loop
7: end if
8: else if 𝑓 == 𝑗 then
9: if 𝑟 < (1 − 𝑝𝑀𝑘𝑗 ) then

10: Declare the first level index as 𝑗, where 𝑝𝑀𝑘 represents
probability of false negative. Exit loop.

11: end if
12: end if
13: end for
14: Else the first level index is identified as 6
15: Let the identified first level class index be 𝑓

The Monte carlo simulation is repeated for 100 Runs, and the results
are summarized in Figs. 5 and 6. Observing that the probability of
detection attained using the optimized structure with the best classifier
model chosen (obtained using ACO) is significantly more than the
default structure with the identical classifier model at all nodes. These
experiments reveal the importance of the proposed technique.

5. Demonstrating the importance of the proposed technique using
engine vibration data from machinery fault database

The variations of the proposed techniques are summarized below.
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Fig. 4. Workflow of the proposed technique.
1. Optimize the classifier’s order at each level, along with a suitable
selection of binary classifiers at each block.

2. Fix the identical binary classifier techniques at each block and
optimize the order of the classifiers at each level.

3. Fix the Adaptive boosting binary classifier techniques at each
block and optimize the order of the classifiers at each level.

In all the cases described, 𝑝𝐹 and 𝑝𝑀 for the individual blocks (used in
the ACO-based proposed algorithm) are estimated using validation data
(refer to Section 4). The estimated values of the 𝑝𝑀 and 𝑝𝐹 (obtained
using the experiments) are summarized in Figs. 7 and 8

Fig. 9(a) shows the best hierarchical structure obtained using ACO
with optimal order and model assigned to each node. Fig. 9(b) shows
the best hierarchical structure obtained using ACO with optimal order
with Adaboost.
7

Fig. 10 summarizes the comparison of the performances of the
proposed method (ACO with the optimal order and model, ACO with
the optimal order, and AdaBoost) with the default structure with the
identical classifier model at all nodes.

The selection of the optimal order and the optimal models are done
during the construction of the optimal hierarchical structure. Once
the optimal model is obtained, the time required for classification is
instantaneous (see Table 1).

Table 2 compares the overall probability of detection in the default
hierarchical structure with identical classifiers at every block and the
probability of detection using the proposed technique based on ACO.
The overall probability of detection for the machinery fault data set. It
is observed that the maximum achievement of 90.92% using ACO with
Adaboost, followed by 89.02%, is achieved using ACO with a suitable
selection of binary classifiers at each block.
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Fig. 5. The Monte carlo simulation with randomly assigned false positive (false alarm) and false negative (miss) for the individual blocks determines the overall probability of
detection for different runs using various techniques. It shows that ACO with an optimal model and order performs better than other models in most runs.
Fig. 6. The Monte carlo simulation with a randomly generated sequence of the class indices belonging to the root node mimics the real-time train and test data. It shows that
ACO with an optimal model and order performs better than other models in most runs.
The performance of the proposed technique (Hierarchical structure
using ACO based with and without Adaboost) is compared with the
default hierarchical structure with identical classifiers at each block
using the following metrics: (a) Precision, (b) Recall, (c) F1 score,
and (d) Accuracy. The metrics shown in Fig. 11 are for the individual
classes. It was found that as the layer of the hierarchical structure
8

increases, there is a significant improvement in all the metrics by using
the proposed technique ACO-based with and without Adaboost.

The proposed method aims to increase the hierarchical classifier’s
overall detection rate (accuracy). Though the performance in terms of
metrics like F1 score, precision, and recall are lesser, it is noted that
the overall detection rate (hierarchical structure) increases due to the
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Fig. 7. The probability of a false positive for the model used in each block classifier in the hierarchical structure does not exceed 0.2. It estimates the error probability of the
validation dataset. B1 to B53 — Individual block classifier, M1 — Random Forest Ensemble, M2 — Decision Tree, M3 — Gradient Boosting, M4 — K-Nearest Neighbor, M5 —
Multilayer Perceptron, M6 — Adaboost.
Fig. 8. The probability of a false negative for the model used in each block classifier in the hierarchical structure does not exceed 0.2. It estimates the error probability of the
validation dataset. B1 to B53 — Individual block classifier, M1 — Random Forest Ensemble, M2 — Decision Tree, M3 — Gradient Boosting, M4 — K-Nearest Neighbor, M5 —
Multilayer Perceptron, M6 — Adaboost.
Table 1
Overall probability of detection for benchmark data set.

Model Techniques Testing

Default order with same model in all blocks

1 Random Forest Ensemble(𝑀1) 87.23%
2 Decision Tree(𝑀2) 84.93%
3 Gradient Boosting(𝑀3) 86.73%
4 K-Nearest Neighbor(𝑀4) 82.63%
5 Multilayer Perceptron(𝑀5) 86.73%

6 Proposed technique using ACO 89.02%

7 Proposed technique using ACO with Adaboost 90.92%
9

optimal order (along with the selected models assigned to the classifiers
or Adaboost combiner) obtained using the proposed ACO algorithm.
The objective function can be reformulated depending on the metric
(say, F1 score) that needs to be maximized.

Contrasting previous work for the application engine vibration data:
Several studies have proposed a framework to classify mechanical faults
in rotating machines. In the method proposed by Pestana Viana et al.
(2016), multi-layer perceptron with one hidden layer of 35 neurons
and a 31 feature element were proposed to classify three mechanical
faults: normal, imbalance, and misalignment. In the method proposed
by Ali et al. (2019), Multi-Layer Perceptron with one hidden layer (ten
neurons), and 25 feature vectors are used to obtain 96.2% accuracy
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Fig. 9. The number in red color indicates the best model in each block (1 → 𝑀1, 2 → 𝑀2, 3 → 𝑀3, 4 → 𝑀4 and 5 → 𝑀5). The numbers from 1 to 53 represent the block classifier
at each level. (a) Final hierarchical structure after applying Ant colony optimization with validation data (b) Final hierarchical structure after using Ant colony optimization with
Adaboost in the validation data.
Table 2
Comparison of level 1 probability of detection attained using the proposed technique and the method proposed in Ali et al. (2019).

Major class Type of classes Existing work Default hierarchical structure Proposed method

Ali et al. (2019) M1 M2 M3 M4 M5 ACO ACO and
AdaBoost

1 Normal 167/167 165/167 164/167 164/167 162/167 165/167 164/167 165/167
2 Horiz. Misal. 161/167 164/167 164/167 165/167 165/167 165/167 164/167 164/167
3 Vert. Misal. 158/167 136/167 147/167 149/167 146/167 149/167 162/167 164/167
4 Imbalance 164/167 146/167 145/167 151/167 149/167 151/167 159/167 157/167
5 Overhange 153/167 130/167 117/167 122/167 123/167 121/167 161/167 160/167
6 Underhang 161/167 115/167 90/167 111/167 104/167 111/167 161/167 163/167

Over all percentage 96.2% 85.43% 82.53% 86.03% 84.73% 86.03% 96.91% 97.11%
c

or classifying into six basic classes of the vibration database. SMOTE
echniques were used to balance the data, which may lead to the
rained model overfitting.
10

t

The proposed technique in our paper is analyzed using the Monte
arlo simulation and is implemented in engine vibration applications
o check the classification performance. The adaptive boosting strategy
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Fig. 10. The experimental result with the machinery fault database compares the overall probability of detection attained using the default hierarchical structure with identical
classifiers assigned to each classifier block and the hierarchical optimal blocks with the specific classifier model achieved using ACO. Also, The hierarchical optimal order was
attained using ACO with the Adaboost technique for 100 Runs (calculated 𝑝𝐹 and 𝑝𝑀 for the individual blocks using validation data).
Fig. 11. Test data performance evaluation using precision, recall, F1 score, and accuracy metrics. T1 — ACO with Adaboost, T2 – Optimal Model with ACO, T3 — Random Forest
Ensemble (M1), T4 — Decision Tree (M2), T5 — Gradient Boosting(M3), T6 — K-Nearest Neighbor (M4), T7 — Multilayer Perceptron (M5).
with ACO in hierarchical classification achieved a score of 97.11% on
our developed technique (Table 2). Adaboost with ant colony optimiza-
tion performs well with an increase in the number of classes and levels
in the hierarchy. The machinery fault data set balances the classes
11
by employing autoencoder to generate augmented data. The proposed
network for data augmentation uses 9 attributes as input. The overall
probability of detection of 90.92% is achieved for classifying all the
root to leaf node classifiers of the hierarchical structure.
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Algorithm 3 Algorithm to classify the arbitrary class label 𝑖 (say)
into one of the root-to-leaf classes using the hierarchical classifiers
(continuation).
1: for j ∈ set of second-level indices corresponding to the first level

identified index 𝑓 do. If the corresponding second-level indices are
empty, declare 𝑓 as the identified class index.

2: if 𝑠 ≠ 𝑗 then
3: Generate 𝑟
4: if 𝑟 > (1 − 𝑝𝑗𝐹𝑘𝑗 ) then
5: Declare the input classifier index as 𝑗. Exit loop
6: end if
7: else if 𝑠 == 𝑗 then
8: Generate 𝑟.
9: if 𝑟 < (1 − 𝑝𝑗𝑀𝑘𝑗 ) then

10: Declare the second level class index as 𝑗. Exit loop.
1: end if
2: end if
3: end for
4: The corresponding last index is identified as the second-level index.
5: if the identified second level index ∈ root classifier then,declare

the second level index as the class index.
6: Similarly, the corresponding third-level index (if available) is

identified and declared as the class index.
7: end if

Thus, in the existing work, 25 traits are used as input, and classifi-
cation is performed for six root classes at level 1. The proposed method
detects the faulty machinery database with reasonable accuracy. Using
ACO, the deepest class in the hierarchy level has a high detection rate
compared with the default hierarchical classification structure, evident
in the metrics shown in Fig. 11.

6. Conclusion and future direction

This paper demonstrates the importance of optimizing the order in
which the blocks are arranged in the hierarchical classifier structure
using the engine vibration application (Machinery fault database) with
three levels. It is observed that the ACO-based Adaboost technique per-
forms well, with an overall accuracy of 1.9% improvement compared
to ACO without Adaboost and an improvement in the overall accuracy
of 3.6% compared with the best among other methods without ACO
and Adaboost. The proposed algorithm is also validated using Monte
carlo simulation. Exhaustive experiments using benchmark datasets
with more levels reveal the robustness of the proposed algorithm. The
proposed work uses the statistical parameter mean calculated from
eight individual sensor outcomes and the corresponding rpm as one of
the feature elements as input to train the classifier. The detection rate
can be improved if other statistical parameters, along with the mean,
are collected from the individual sensors. Developing the algorithm to
optimize the order with an imbalanced data set without augmented
data is also suggested.
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Appendix. Closed-form expression for the computation of overall
probability of detection for the given hierarchical binary structure

The following is a typical computation of the overall probability of
detection for hierarchical blocks stacked, as shown in Fig. 1 Let 𝑝𝐹𝑘𝑖
represent the probability of false positive of the 𝑖th classifier using
the 𝑘𝑖𝑡ℎ technique. Similarly, 𝑝𝑀𝑘𝑖 represents the probability of false
negative of the 𝑖th classifier using the 𝑘𝑖𝑡ℎ technique. Assuming that;
the prior equal probabilities, the overall probability of detection is
computed as follows.

𝑝𝑘𝑖 (𝑖∕𝑖) =(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑖 )(1 − 𝑝𝑀𝑘𝑖 )

∀i = 1, 2, 3,… , 6
(A.1)

𝑝𝑘𝑖 (𝑖∕𝑖) =
2
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )

(1 − 𝑝𝑀𝑘𝑖 )∀i = 7, 8, 9, 10,∀n = 𝑖 − 7

(A.2)

𝑝𝑘𝑖 (𝑖∕𝑖) =
3
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )

(1 − 𝑝𝑀𝑘𝑖 ) ∀i = 11, 12, 13,… , 16,∀n = 𝑖 − 11

(A.3)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )

(1 − 𝑝𝑀𝑘𝑖 )∀i = 17, 18, 19,… , 23,∀n = 𝑖 − 17

(A.4)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝5𝑀𝑘5 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )

… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 24, 25, 26,∀n = 𝑖 − 24

(A.5)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )

… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 27, 28, 29,∀n = 𝑖 − 27

(A.6)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )(1 − 𝑝𝑀𝑘24 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )

… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 30,… , 33,∀n = 𝑖 − 30

(A.7)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )(1 − 𝑝𝐹𝑘24 )(1 − 𝑝𝑀𝑘25 )(1 − 𝑝𝐹𝑘𝑖−1 )

(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 34,… , 37,∀n = 𝑖 − 34

(A.8)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )

25
∏

𝑙=24
(1 − 𝑝𝐹𝑘𝑙 )(1 − 𝑝𝑀𝑘26 )(1 − 𝑝𝐹𝑘𝑖−1 )

(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 38,… , 41,∀n = 𝑖 − 38
(A.9)
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𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )(1 − 𝑝𝑀𝑘27 )(1 − 𝑝𝐹𝑘𝑖−1 )(1 − 𝑝𝐹𝑘𝑖−2 )

… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 42,… , 45,∀n = 𝑖 − 42

(A.10)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )(1 − 𝑝𝐹𝑘27 )(1 − 𝑝𝑀𝑘28 )(1 − 𝑝𝐹𝑘𝑖−1 )

(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 46,… , 49,∀n = 𝑖 − 46

(A.11)

𝑝𝑘𝑖 (𝑖∕𝑖) =
4
∏

𝑗=1
(1 − 𝑝𝐹𝑘𝑗 )(1 − 𝑝𝑀𝑘5 )

28
∏

𝑙=27
(1 − 𝑝𝐹𝑘𝑙 )(1 − 𝑝𝑀𝑘29 )(1 − 𝑝𝐹𝑘𝑖−1 )

(1 − 𝑝𝐹𝑘𝑖−2 )… (1 − 𝑝𝐹𝑘𝑖−𝑛 )(1 − 𝑝𝑀𝑘𝑖 )∀i = 50,… , 53,∀n = 𝑖 − 50

(A.12)
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