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Abstract

Remote sensing image classification is difficult due to the curse of extracting
valuable information from high-resolution satellite images in numerous applica-
tions such as land cover mapping, urban planning, and environmental monitoring.
This study proposes a novel approach for high-resolution remote sensing image
classification by utilizing kernel linear discriminant analysis (K-LDA). This
chapter also provides a comprehensive theoretical background on principal
component analysis (PCA) and linear discriminant analysis (LDA) to establish
the foundation for our proposed method. Principal component analysis (PCA)
is a widely used dimensionality reduction technique that aims to transform the
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original data into a new space of uncorrelated variables, known as principal
components. This dimensionality reduction simplifies the data and retains the
most significant variance within the dataset. However, PCA does not consider
class information, which can be crucial for classification tasks. On the other
hand, linear discriminant analysis (LDA) considers class information. It aims
to find a projection that maximizes the separation between different classes
while minimizing the variance within each class. LDA has shown excellent
performance in various classification tasks. Still, its linear nature can limit
its effectiveness in handling complex and nonlinear data distributions in high-
resolution remote sensing images. It has been introduced that kernel linear
discriminant analysis (K-LDA) extends LDA into a high-dimensional feature
space using kernel functions to address this limitation. K-LDA can capture
intricate nonlinear relationships within the data by employing kernels, making
it particularly well suited for classifying high-resolution remote sensing images.
The proposed K-LDA approach is evaluated using a benchmark dataset of high-
resolution remote sensing images(landcover satellite Images). Our experimental
results demonstrate that K-LDA consistently outperforms the classification of
different classes, especially when dealing with complex spatial patterns and
diverse land covers. The proposed technique underscores the effectiveness of
K-LDA for high-resolution remote sensing image classification tasks. Further-
more, the study provides insights into each technique’s computational efficiency
and resource demands, which are crucial for real-world applications where
accuracy and efficiency are paramount. The implications of the findings extend to
urban planning, environmental monitoring, and disaster response, where accurate
land cover classification serves as a cornerstone. The step-by-step methodology
described in the chapter serves as the foundation for tackling high-dimensional,
multi-class data challenges in image classification tasks. This work advances the
field’s understanding of the intersection between image classification and remote
sensing, fostering the development of more accurate and efficient land cover
analysis methodologies.

Keywords

PCA · LDA · KLDA · HRRS images

Introduction

Image classification is an essential task in computer vision and pattern recognition.
In data processing, hyperspectral remote sensing images (HRSIs) have a relatively
small number of labelled samples and high spectral dimensionality, resulting
in the Hughes phenomenon. Therefore, feature extraction is necessary before
terrain classification (Liu et al. 2022; Li et al. 2022). However, dealing with
high-dimensional image data can be challenging due to its complexity and com-
putational requirements (Liu et al. 2022; Xin-Yi et al. 2020; Hidalgo et al. 2015).
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Dimensionality reduction techniques, such as PCA, LDA, and KLDA, can help
address these challenges by reducing the dimensionality (Jan et al. 2023; Gongjin
et al. 2022; Otani et al. 2020; Santhi et al. 2022; Varma et al. 2019; Raghavendra
et al. 2012; Li et al. 2020; Jia et al. 2022; JayaBrindha and Subbu 2018) of the data
while preserving its essential features.

Earlier Study

The PCA dimensionality reduction technique, according to the author (Tsoulfidis
and Athanasiadis 2022), creates important features by linearly reducing correlated
variables into fewer uncorrelated variables. In this study, PCA is used to determine
the top two (or a maximum of three) eigenvalues that compress the majority of data
influencing the movement of the economy. These eigenvalues determine the price-
profit or wage-profit curves’ shapes. The authors use the Silhouette method and the
k-means clustering algorithm to identify industry groups. The Silhouette approach
is utilized to create the industry clusters, and the k-means clustering technique aids
in extracting the ideal number of groupings of industries. The PCA method is used
in the study to group industries and rank them according to their economic impact.
The Silhouette method and the k-means clustering approach are used to identify and
create clusters of industries.

The authors (Liu and Chen 2005) of this research use principal component
analysis with linear discriminant analysis (PCA+LDA) as one of the face recog-
nition techniques. The small sample size (SSS) issue with conventional LDA is
addressed by the two-stage feature extraction method PCA+LDA. The face samples
are projected onto a principal component analysis (PCA) subspace in the first
stage of PCA+LDA. An unsupervised dimensionality reduction method called PCA
seeks to identify the data’s most significant changes. The dimensionality of the
data is decreased, and the most distinct features are kept by projecting the face
samples onto the PCA subspace. The projected data are subjected to linear discrim-
inant analysis (LDA) in the second stage. With LDA, supervised dimensionality
reduction increases the between-class distribution while reducing the within-class
scatter. LDA improves classification performance by maximizing the between-class
distribution, which increases the separability between various classes. PCA+LDA
combines PCA and LDA, a well-liked method for face recognition problems
because it effectively achieves feature extraction and dimensionality reduction.
To further improve the classification performance, the research authors suggest
integrating PCA+LDA with resampling LDA/QR. In his paper, a PCA+LDA feature
extraction method is used overall. PCA is used in the first stage to lower the
dimensionality of the face samples, and LDA is used in the second stage to increase
the discriminative strength of the features.

This chapter’s study (Sadeghi et al. 2001) focuses on the use of principal
component analysis (PCA), linear discriminant analysis (LDA), and support vector
machines (SVM) for face verification. The feature extraction methods are PCA and
LDA, while the classifier is SVM. A dimensionality reduction method called PCA
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isolates the most important changes in the data. The dimensionality is decreased,
yet the most distinctive traits are kept when the face samples are projected onto
a subspace. On the other hand, LDA is a supervised dimensionality reduction
strategy that improves the separability between various classes by maximizing
the between-class scatter and minimizing the within-class scatter. The efficacy of
face verification is enhanced by the effective feature extraction and dimensionality
reduction made possible by the PCA and LDA combination used in this work.
PCA and LDA improve the discriminative strength of the features while reducing
the dimensionality, making face recognition more precise and dependable. The
SVM classifier uses the retrieved features to distinguish between real and fake
faces. SVM is renowned for its resilience against overfitting and capacity to
handle high-dimensional data. The authors want to increase the precision and
generalizability of the face verification system by using SVM as the classifier.
The complementing roles played by PCA, LDA, and SVM in face verification
are significant. PCA and LDA extract discriminative features and decrease the
dimensionality of the data, providing an effective and precise representation of face
photos. As a robust classifier, SVM successfully distinguishes between real and
fake faces using the retrieved characteristics, producing accurate results for face
verification. Using a mix of principal component analysis (PCA), linear discriminant
analysis (LDA), and support vector machine (SVM), the research done in this
chapter (Raghavendra et al. 2012) involves the development of a revolutionary face
recognition system. Dimension reduction using PCA, feature extraction using LDA,
and SVM classification comprise the approach’s three components. SVM is used for
classification because it reduces misclassification brought on by classes that are not
linearly separable. Face picture classification based on computed LDA features is
performed using the SVM algorithm. Finally, this method combines the advantages
of PCA, LDA, and SVM to improve face recognition, especially in conditions with
few samples per class and high-dimensional face images.

Using a transfer learning method, the work in the paper (Xin-Yi et al. 2020)
involved classifying the land cover on high-resolution remote sensing (HRRS) pho-
tographs. Pseudo-label assignment and joint fine-tuning procedures were combined
in the study’s methodology. The researchers put out a semi-supervised method
that connected the inherent properties of ground objects by using the high-level
deep features of multi-source data. This method enabled automatically classifying
unlabeled target photos without needing target domain-specific annotation data. The
effectiveness of the suggested technique was tested in experiments using datasets
of various classifications and sizes. The researchers examined and addressed the
impact of several parameters, such as patch size, segmentation technique, and
thresholds of the transfer learning scheme. The classification outcomes were
contrasted with those of other methods, including multilayer perceptrons (MLP),
support vector machines (SVM), random forests (RF), and maximum likelihood
classification (MLC). The effectiveness of the various techniques was evaluated
using metrics like overall accuracy and Kappa. The studies’ outcomes showed how
well and broadly the suggested method for classifying land cover in various HRRS
photos worked. The fine-tuning strategies enhanced classification performance by
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acquiring structural knowledge and spatial linkages particular to the target area.
Particularly when the spectral responses of the target and source domains were
similar, the method demonstrated promising accuracy. To automatically categorize
land cover in high-resolution remote sensing photos, the study included joint fine-
tuning approaches, pseudo-label assignment, and a transfer learning strategy. The
suggested method outperformed existing classification techniques, demonstrating
the promise of this approach for real-time land-cover classification applications.

The earlier study provides a comprehensive understanding of applying deep
learning techniques to high-dimension image data (satellite imagery for land cover
analysis) (Rajeswara Rao et al. 2022; Ara et al. 2023; Xin-Yi et al. 2020; Raghaven-
dra et al. 2012; Sadeghi et al. 2001; Liu and Chen 2005; Tsoulfidis and Athanasiadis
2022; Guo et al. 2019; Hasanlou et al. 2015). It covers a range of deep learning
algorithms commonly used for image classification. The number of spectral bands
or channels in the data cube is called the hyperspectral data’s dimensionality. High-
dimensional data are produced via hyperspectral data, often including hundreds of
spectral bands. This high dimensionality might be problematic for classification
systems because it can result in overfitting and the dimensionality curse.

Foundational Techniques for Data Analysis

Principal Component Analysis (PCA)

Overview of PCA
PCA is widely used as a dimensionality reduction technique in statistics and
multivariate analysis. It was first introduced by Karl Pearson in 1901 and later inde-
pendently developed by Harold Hotelling in the 1930s (Tsoulfidis and Athanasiadis
2022; Shemul et al. 2022). The PCA technique reduces the dimensionality of data
by constructing relevant features by linearly combining the original data. In order
to build relevant features, correlated variables are linearly transformed into fewer
uncorrelated variables. The transformation is achieved by projecting the data into
the reduced PCA space using the covariance or correlation matrix’s eigenvectors,
also called the principal components (PCs). Based on the projected data, most, if
not all, of the variance can be captured by linear combinations of the initial data. It
identifies the directions along which the data varies the most and provides a compact
representation that retains the essential information. PCA can effectively reduce the
computational complexity and improve the efficiency of subsequent analysis. This
transformation is accomplished by finding the eigenvectors of the covariance matrix,
which stand in for the principal components. Data compression, signal processing,
and image processing are a few of the areas where PCA has found use. To classify
high-dimensional image data more effectively and accurately, PCA is essential.

The main goal of PCA is to identify the directions in the initial feature space
along which data differs most. Principal components are a set of directions that are
orthogonal to one another and ranked according to how much variance in the data
they explain.
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In the context of dimensionality reduction, consider two random vectors, u and v,
with m elements each, where n < m. The objective is to obtain a transformation
matrix W of size m × m that maps the random vector u to v as v = WT u. This
process is commonly known as the dimensionality reduction technique.

Steps Involved and an Analysis of Reduced Dimensions Using PCA
Let me consider the dataset represented as a matrix X of size n × m, where n is
the number of samples and m is the number of features. μ is the mean vector of the
dataset calculated by taking the column-wise mean of X. μ is subtracted from each
sample in X to center the data around the origin. Covariance matrix C of the centered
data is computed by using the formula C = 1

n−1 (X − μ)T (X − μ). Eigenvalue
decomposition is performed on C to obtain the eigenvectors and eigenvalues.

The eigenvectors and eigenvalues are represented as V and Λ, respectively. The
eigenvalues are sorted in descending order. Arrange the corresponding eigenvectors
accordingly. The decision on how many components or eigenvalues to fix in PCA
is arbitrary. The amount of variance described by each component, the targeted
dimensionality reduction, and the particular requirements of the problem are some
variables that may affect dimensionality. The approach used to determine the
optimal number of components is to plot the cumulative explained variance ratio
as a function of the number of components and select the number of components
that capture a significant portion of the variance. It helps balance dimensionality
reduction and preserving important information. k eigenvectors corresponding to
the k highest eigenvalues are selected to form the principal components matrix
P. The centered data X is projected onto the principal components by computing
Xreduced = (X −μ) · P. Finally, it returns the reduced-dimensional representation of
the dataset Xreduced.

The most significant information is kept, while the less important components
are removed in the reduced-dimensional dataset produced by PCA. It can be

Algorithm 1 Principal Component Analysis (PCA)
Require: train_data: Training data matrix of size n×m, where n and m is the number of samples

and features respectively.
Ensure: T: Training data matrix after dimensionality reduction using PCA.
1: Center the training data by subtracting the mean of each feature.
2: Compute the covariance matrix of the centered training data.
3: Perform eigenvalue decomposition on the covariance matrix to obtain the eigenvectors V and

eigenvalues D.
4: Sort the eigenvectors based on the corresponding eigenvalues in descending order.
5: Compute the cumulative sum of the eigenvalues and normalize it by the sum of all eigenvalues

to obtain the explained variance ratio.
6: Determine the number of components to keep by finding the minimum number of components

that capture a specified amount of variance (e.g., 95%).
7: Select the top (number of components) eigenvectors from V as the PC.
8: Compute the reduced training data T by projecting the centered training data onto the selected

principal components.
9: return PM = (V, explained variance ratio) and T.
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used as an input for other machine learning algorithms, feature extraction, or
visualization. The PCA works best with linear relationships and may perform poorly
with nonlinear ones. Techniques for nonlinear dimensionality reduction, such as the
kernel technique, might be more suitable in such circumstances.
where PM → PCA model, T → reduced train data.

Illustration with example if a dataset is an image of size n × m, where n and
m are the number of samples and features, respectively. u and v are the number
of elements in the vectors represented as n × m, representing the pixel values.
Lowering the dimensionality while keeping the essential information for accurate
image classification is advised because high-dimensional data is computationally
demanding and may cause overfitting during classification tasks.

The aim is to find the transformation matrix W of size n × m to achieve
dimensionality reduction. This transformation matrix will map the original vector
u to the reduced vector v. The image is represented in a lower-dimensional space
via the modified vector v while keeping the essential data for classification.

Now, to compute the variance and covariance: v is the variance of the transformed
random variable, denoted as σ 2

v , which measures the spread of data in the reduced
lower-dimensional space. It can be calculated as: σ 2

v = E[v2] − (E[v])2.
The covariance between the u elements characterizes how they vary. The covari-

ance matrix Cu of the random vector u is given by: Cu = E[uuT ] − E[u]E[u]T .
Here, E[v2] is the expected value (mean) of the element-wise square of v, and

E[v] is the expected value (mean) of v. Similarly, E[uuT ] represents the expected
value of the outer product of u with itself, and E[u] is the mean vector of u.

By computing the variance and covariance, valuable insights into the spread and
correlations of data points in the reduced lower-dimensional space are gained, aiding
in understanding the impact of dimensionality reduction on the dataset.

Linear Discriminant Analysis
With j = 1, . . . , K and i = 1, . . . , nj, let Xij represent the ith vector in the jth
class. Calculate the between-class and within-class scatter matrices to analyze the
data distribution. Sb is the between-class scatter matrix and is computed as follows:

Sb =
K∑

k=1

nk(ck − c)T (ck − c) (1)

where the centroid of the kth class is represented as ck and the overall centroid c is
computed as:

c = 1

K

K∑

i=1

ci (2)
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Similarly, the within-class scatter matrix, denoted as SW, is computed as follows:

SW =
K∑

j=1

nj∑

i=1

(xij − cj)
T (xij − cj) (3)

where cj → centroid of the jth class index.
To reduce the dimensionality of the data while preserving the class separability,

W → transformation matrix is introduced to map the original vectors to a lower-
dimensional space: y = Wx. The scatter matrices are then transformed accordingly,
resulting in WSbWT and WSwWT.

To maximize the class separability, optimal W is obtained by finding the
eigenvectors corresponding to the significant eigenvalues of the matrix S−1

W SB. The
matrix W (size r×m), where m and r are the dimensions before and after projection,
is formed by row-wise arranging the appropriate eigenvectors. r is the number of
significant eigenvalues corresponding to the eigenvectors.

The generated matrix W is the basis for linear discriminant analysis (LDA),
ensuring that the projected vectors within each class are closer together and the
centroids of various classes are distinguished.

LDA aims to find a linear projection that maximizes class separation while
minimizing the variation within each class (Refer Algorithm 2).

μc is the class means for each class c where, μ = 1
Nc

∑Nc

i=1 xi . The overall mean

μ is computed for the training data as μ = 1
N

∑N
i=1 xi . Sb refers to between-class

scatter matrix, where Sb = ∑C
c=1 Nc(μc −μ)(μc −μ)T and the within-class scatter

matrix is Sw = ∑C
c=1

∑Nc

i=1(xi − μc)(xi − μc)
T . The eigenvectors and eigenvalues

of S−1
w Sb are computed. The eigenvectors are sorted in descending order of their

eigenvalues. The first d eigenvectors are selected corresponding to the d largest
eigenvalues. Finally, the LDA projection matrix W is constructed using the selected
eigenvectors.

Algorithm 2 Linear Discriminant Analysis (LDA)
Require: Training data X, Training labels Y
Ensure: LDA projection matrix W
1: Compute the class means μc for each class c

2: Compute the overall mean μ of the training data
3: Calculate Sb the between-class scatter matrix.
4: Calculate Sw within-class scatter matrix.
5: Compute the matrix S−1

w Sb

6: Calculate the eigenvalues and of S−1
w Sb

7: Sort the eigenvectors in descending order of their eigenvalues
8: Select the first d eigenvectors corresponding to the d largest eigenvalues
9: Construct the LDA projection matrix W using the selected eigenvectors

10: return W
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Kernel Linear Discriminant Analysis (KLDA)
Ronald A. Fisher created Linear Discriminant Analysis(LDA), a traditional linear
feature extraction method, in 1936. It seeks to identify a lower-dimensional
subspace that maximizes the data’s ability to be divided into multiple classes.
However, LDA assumes that the data can be separated linearly, which may not be
true for complicated datasets. Kernel linear discriminant analysis combines kernel
methods and linear discriminant analysis, which was presented as a solution to this
problem. Before completing LDA, KLDA uses kernel functions to translate the
data into a higher-dimensional feature space more likely to be linearly separable.
Several pattern recognition tasks, including picture classification, have shown
the effectiveness of KLDA. KLDA enhances class separability and classification
accuracy by increasing the feature space’s discriminative strength. KLDA focuses
on maximizing the separability between different classes in the data by finding a
low-dimensional representation that enhances the discriminative power (Liu et al.
2022; Xiaoming et al. 2012; Christopher 2006; Gopi 2020; Martinez and Kak 2001).
It maps the data into a higher-dimensional feature space using a kernel function and
performs LDA to extract discriminant features.

The Main Contribution of the Work

In this chapter, we leverage the strengths of KLDA for image classification. The
proposed technique experiments with the landcover dataset (Xin-Yi et al. 2020; Xin-
Yi Tong et al. 2020; Wang et al. 2008). The dataset has a multiclass of RGB images.
PCA is applied for dimensionality reduction to capture the most important variations
and performs KLDA for further feature extraction to enhance the separability
between different image classes. The reduced-dimensional features are then used
to train a binary SVM for classification. The classification accuracy is evaluated for
each class, providing insights into the effectiveness of the PCA-KLDA approach for
image classification tasks.

No attempts are made to use KLDA as a classification technique. In our proposed
work, KLDA is used for dimensionality reduction, followed by feature extraction
and a framework for image classification. The proposed method leverages the
strengths of KLDA to address challenges in high-dimensional multi-class data
classification. It offers a promising approach for improved image recognition and
pattern recognition applications. It achieves a more efficient and discriminative
representation of the image data, leading to improved classification performance.
Furthermore, an experiment with real-time landcover dataset (Xin-Yi et al. 2020;
Xin-Yi Tong et al. 2020) illustrates the application of KLDA image classification.
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Methodology

This chapter proposes a way for utilizing KLDA to categorize multiclass data.
The process for classifying high-dimensional multiclass data is shown in the block
diagram (Refer Fig. 1). The block diagram (Refer Fig. 1) represents the pattern
recognition task through a multistage process involving training and testing phases.
The training phase begins with loading reference images and corresponding ground-
truth labels. These images are partitioned into regions of interest. The subblock
of size 10 × 10 with overlapping is taken from the reference image to train
the network. A classification scheme is devised to assign labels to pixels in the
images. Extracted image regions and their corresponding labels are collected.
Dimensionality reduction is then performed using Eigen analysis of the collected
data. During the testing phase, new images are processed similarly. Regions of
interest are extracted, and the classification scheme is applied to predict labels for
pixels. These predictions are compared with a predefined set of classes, and each
region is assigned the most likely class. The results are visualized alongside the
test images and their ground-truth labels. The KLDA method employs Gaussian
kernels and Eigen analysis to create feature vectors for training and testing images,

Fig. 1 Block diagram
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enabling effective pattern recognition. Kernel LDA is a nonlinear extension of linear
discriminant analysis (LDA). It allows for better handling of complex, nonlinearly
separable data by transforming it into a higher-dimensional feature space using
kernel functions.

Training images are loaded, and regions of interest are extracted from them.
The RGB values of pixels in these regions are normalized and treated as feature
vectors. The feature vectors are transformed into a higher-dimensional space for
each region using Gaussian kernel functions. A matrix “K” is formed where each
column corresponds to a transformed feature vector. The “K” matrix is used to
calculate class-specific means (M1, M2, . . . , M6) and within-class scatter
matrices (SW). A between-class scatter matrix (SB) is calculated using the class
means. The generalized eigenvalue problem is solved to find the eigenvectors and
eigenvalues of the matrix ((SW)−1 × SB)). The top eigenvectors are retained for
dimensionality reduction.

The eigenvectors obtained from the eigenvalue problem project the training data
(matrix “K”) to a lower-dimensional space. The projected data is stored in the
matrix “V ”, where each column represents a transformed feature vector in the lower-
dimensional space.

Testing images are loaded, and regions of interest are extracted. Similar to
the training phase, Gaussian kernel functions are applied to transform the pixel
values of these regions into the higher-dimensional space. The transformed data
is projected into the lower-dimensional space using the same eigenvectors “E”
obtained during training. Distances between the projected test data and the class-
specific means (V 1, V 2, . . . , V 6) are calculated. For each region, the minimum
distance indicates the class that best represents that region.

The resulting class predictions are visualized alongside the corresponding test
images and ground-truth labels. The color map is used to represent different classes
in the visualization.

Kernel Function
The kernel function used is a Gaussian kernel. The Gaussian kernel function
computes the kernel value between two feature vectors.

res = exp

(
− (x − y)ᵀ(x − y)

σ

)
(4)

The hyperparameter sigma is tuned by varying the value from 0.001 to 10000, and
it is found that at σ = 100, it achieves better classification results. The workflow
describes kernel linear discriminant analysis for classifying images into multiple
classes. It involves training with kernel transformations, dimensionality reduction,
and subsequent testing and visualization of the classification results.
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Kernel Linear Discriminant Analysis (KLDA)

The proposed technique employed is kernel-LDA to enhance the separability
of vectors in the feature dimensional space, which maps the vectors to higher-
dimensional space and then back to lower-dimensional space, respectively. Let x
be transformed to the higher dimensional space as ψx, and the LDA is constructed
as follows:

Sψ
wwψ = Sψ

b wψ (5)

Here, Sψ
w → within-class scatter matrix calculated using the vectors in the

higher-dimensional space, and Sψ
b → between-class scatter matrix in the higher-

dimensional space. The LDA basis vector in this space is wψ . To find wψ , we
represent it as Mψuψ , where Mψ is obtained from the matrix:

M = [ψ(x11);ψ(x12);ψ(x13); . . . ;ψ(x1n1);ψ(x21);ψ(x22)] (6)

Next, we multiply ψT on both sides of the matrix equation, resulting in:

ψTSψ

Wψ = ψTSψ

B ψ (7)

The matrix ψTSψ

Wψ corresponds to the between-class scatter matrix computed in
the kernel space. This kernel space is spanned by the column space of matrix G,
where the (m × n)th column vector of G is given by:

[k(x11, xmn) . . . k(xnkK, xmn)] (8)

The kernel function is k(x, y). The eigenvector ψ is the kernel-LDA basis. The
kernel-LDA basis is used to build the column vectors of the transformation matrix
(E) (column-wise ordered eigenvectors (eigenvectors ψ1, ψ2, ψ3, . . . , ψr ). In order
to use kernel-LDA to map an arbitrary x with size m × n to the lower-dimensional
vector, perform these steps:

• Map the vector x to the kernel space as [k(x11, x); k(x11, x) . . . k(x1n1 , x)

. . . k(xnk , x)]. Let it be k(x).
• The obtained vector is then mapped to the lower-dimensional space using

ETk(X).
• Consequently, the vector in the feature dimensional space with size m × 1 is

mapped to the lower-dimensional space with size r × 1.
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Dataset Description and Preparation

The GID (Geographical Image Dataset) (Xin-Yi et al. 2020; Xin-Yi Tong et al. 2020)
dataset, which contains 60 high-resolution GF-2 (Gaofen-2) images, was employed
in the study. GID was created to represent the actual distribution of different types
of land cover and to serve as training data for designed classifier models. The
dataset covers a wide range of land-cover categories and geographic areas, allowing
for comprehensive analysis and evaluation of land-cover classification algorithms.
It provides a diverse set of images with different spatial resolutions and spectral
bands, enabling researchers to study the impact of these factors on classification
performance. GID has been made available online to benefit researchers in the field.
It is a valuable resource for training and testing deep learning models for land cover
classification in high-resolution remote sensing images.

Our research uses the land cover collection of HRRS images (Xin-Yi et al. 2020;
Xin-Yi Tong et al. 2020). Recently, many high spatial-resolution remote sensing
(HRRS) images have been made accessible for mapping land cover. However,
finding an effective method for achieving accurate land-cover classification with
high-resolution and heterogeneous remote sensing images is frequently challenging
due to the complex information brought on by the increased spatial resolution and
the data disturbances caused by various image acquisition conditions. The dataset
comprises images of size 1000 ×1000 with five significant classes, such as built-
up, Farmland, Forest, Meadow, and water, as class 1, 2, 3, 4, and 5, respectively.
Additionally, the class 6 is considered as the class that does not belong to any
of the five major classes (Refer Fig. 2). The dataset has reference images and
corresponding ground-truth images.

From each class image (class 1 to 6), subblocks of size 9 × 9 are randomly
selected. Each class has 600 subblock images, so the size of the input image is
3600, stored as input, and corresponding labels are stored in the output array.

Application of KLDA to the HRRS Images

KLDA is a feature extraction technique that aims to find a low-dimensional subspace
that maximizes class separability. It combines the ideas of linear discriminant
analysis (LDA) and the kernel trick to handle nonlinear data (Refer Algorithm 3).
The distance matrix is computed to measure the pairwise distances between classes.

K is a kernel matrix. In KLDA, the kernel matrix captures the similarity between
data points. Given a dataset X = {x1, x2, . . . , xn}, where xi ∈ R

d , the kernel matrix
K is defined as:

Kij = k(xi, xj ) (9)
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Fig. 2 Figure (a) and (b) represents sample Landcover dataset with reference images and
corresponding ground truth images (Refer Xin-Yi Tong et al. 2020)
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Algorithm 3 Kernel linear discriminant analysis (KLDA)
Require: Training data X, Training labels Y
Ensure: KLDA projection matrix W
1: Compute the kernel matrix K using a kernel function
2: Compute the class means μc for each class c in the kernel space
3: Compute the overall mean μ of the training data in the kernel space
4: Compute the Sb in the kernel space
5: Compute the Sw in the kernel space
6: Compute the matrix S−1

w Sb in the kernel space
7: Calculate the eigenvectors and eigenvalues of S−1

w Sb

8: Sort the eigenvectors in descending order of their eigenvalues
9: Select the first d eigenvectors corresponding to the d largest eigenvalues

10: Construct the KLDA projection matrix W using the selected eigenvectors
11: return W

The kernel function used is Gaussian (RBF) kernel, which computes the dot
product between two vectors, equivalent to the inner product in the original feature
space. It is a popular choice for linearly separable data or when the data exhibits a
linear relationship.

μc is the class means for each class c in the kernel space. μ is the overall mean
of the training data in the kernel space. Sb is the between-class scatter matrix in the
kernel space. Sw is the within-class scatter matrix in the kernel space. S−1

w Sb is the
matrix computed in the kernel space. The eigenvectors and eigenvalues are given as
S−1

w Sb. In KLDA, the number of eigenvectors to retain is determined by the number
of classes minus one (n − 1). KLDA aims to find a projection that maximizes
the between-class scatter while minimizing the within-class scatter. The resulting
eigenvalues and eigenvectors correspond to the discriminant directions that best
separate the classes. The eigenvectors chosen are 14 and are sorted in descending
order of their eigenvalues. The first d eigenvectors are selected to correspond to the
d largest eigenvalues. Finally, the KLDA projection matrix W is constructed using
the selected eigenvectors.

The distance matrix is computed to measure the pairwise distances between
classes in the dataset (refer to Fig. 3). It provides valuable information about the
separability of different classes. The Euclidean distance is used, which calculates
the straight-line distance between two points in an Euclidean space. Let two points
in an n-dimensional space, as (x1, x2, . . . , xn) and (y1, y2, . . . , yn); the Euclidean
distance (D) between them is given by:

D =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2 (10)

The original dataset contains a concatenated matrix of feature vectors, where
each column represents a sample and each row represents a feature. This matrix
is used to compute a distance matrix (D) that captures the pairwise distances
between all samples. The distance matrix helps understand the dissimilarity or
similarity between the original data points in the high-dimensional space. The
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Fig. 3 Figure (a) The distance before applying KLDA and (b) the distance matrix after applying
KLDA

feature vectors are projected from higher-dimension data to lower-dimensional
space after performing kernel linear discriminant analysis (KLDA). It contains
feature vectors where the distance matrix is computed similarly to the original
data samples. The significance of computing a distance matrix from the higher-
dimension data into lower-dimension space feature vectors is that it allows us to
see how well the KLDA has managed to separate different data classes. Samples
from the same class should be close, and samples from different classes should be
farther apart. By computing the distance matrix for the kLDA-transformed feature
vectors, it visualizes the extent to which the classes are linearly separable from
higher-dimensional data into lower-dimensional space. KLDA effectively reduces
dimensionality and improves classification performance by combining the benefits
of LDA and kernel approaches.
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Results and Discussion

This chapter presents the results of our novel image classification and algorithm
applied to a set of test images. The Kernel linear discriminant analysis algorithm
combines Gaussian kernel calculations, eigen analysis, and distance metrics to
achieve the desired outcomes. A series of experiments was conducted using a dataset
comprising various test images and corresponding ground truth data. The algorithm
randomly selects regions from the test images and their corresponding ground truth
data. A set of Gaussian kernel values is calculated for each selected region by
comparing the image subblocks with a predefined set of kernel matrices. These
values are assembled into a matrix for further analysis. The calculated Gaussian
kernel matrix is then projected onto a set of eigenvectors derived from the data.
This step reduces the dimensionality of the data while retaining essential features
for classification. After projecting the Gaussian kernel matrix, the squared distances
between the projected data and predefined eigenvectors are computed. The index
corresponding to the eigenvector with the minimum squared distance is assigned
to each data point. This process results in an index matrix representing the test
image’s classified regions. The obtained index matrix is visualized through a series
of subplots for each test image. The first subplot displays the original test image.
The subsequent subplots show the original region of interest and the predicted
index matrix as a color-coded image, where different colors correspond to different
classifications. The image is declared to the corresponding class group based on the
majority index values predicted in the matrix (subblocks). (Refer to Figs. 4, 5, 6, 7, 8,
and 9).

Fig. 4 Sample test image 1: Class index of the subblocks (size 9 × 9) correctly predicted is 100%

Fig. 5 Sample test image 2: Class index of the subblocks (size 9 × 9) correctly predicted is 57.2%
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Fig. 6 Sample test image 3: Class index of the subblocks (size 9 × 9) correctly predicted is 86.3%

Fig. 7 Sample test image 4: Class index of the subblocks (size 9 × 9) correctly predicted is 100%

Fig. 8 Sample test image 5: Class index of the subblocks (size 9 × 9) correctly predicted is 100%

Fig. 9 Sample test image 6: Class index of the subblocks (size 9 × 9) correctly predicted is
97.76%

The proposed algorithm KLDA represents better results in image classification.
The algorithm’s ability to classify regions based on calculated Gaussian kernel
values and projected eigenvalues demonstrates its potential for various applications
such as object detection and scene segmentation. However, certain limitations exist
in the current implementation. The algorithm’s performance heavily depends on the
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choice of parameters, such as the size of the image subblocks and the number of
eigenvectors used. Further optimization and parameter tuning may be required to
achieve consistent and robust results across diverse datasets. The presented results
highlight the algorithm’s potential for region classification and acknowledge the
need for further refinement and parameter optimization.

Conclusion

The proposed technique contributes to high-resolution remote sensing image anal-
ysis by introducing a novel approach that leverages the strengths of kernel linear
discriminant analysis (K-LDA). The classification method, K-LDA, harnesses the
advantages of dimensionality reduction and class separation. The incorporation of
kernel functions enables K-LDA to efficiently handle nonlinear data distributions,
making it a valuable tool for appropriate and reliable high-resolution remote sensing
image classification.

The groundwork for our proposed method is laid through an in-depth exploration
of the theoretical background encompassing principal component analysis (PCA)
and linear discriminant analysis (LDA). The principal component analysis (PCA)
demonstrated its capability in dimensionality reduction, allowing for the transfor-
mation of complex data into a more manageable space while retaining essential
variance. However, its oversight of class-specific information limits its applicability
in classification tasks where discriminating between distinct classes is paramount.
Linear discriminant analysis (LDA) for class separability emerged as a valuable
technique for classification endeavors. LDA enhances the distinction between
different classes by maximizing inter-class variance and minimizing intra-class
variance. Nevertheless, its linear nature restricts its adaptability to intricate nonlinear
data distributions, characteristic of high-resolution remote sensing images.

The novel kernel linear discriminant analysis (K-LDA) was introduced to address
these limitations. By incorporating kernel functions (Gaussian kernel), K-LDA
extends LDA’s capabilities into high-dimensional spaces, allowing for the capture
of intricate nonlinear relationships within the data. This unique attribute positions
K-LDA as a promising candidate for classifying high-resolution remote sensing
images, where complex spatial patterns and diverse land covers necessitate a
nuanced approach. In the evaluation phase, the proposed K-LDA method underwent
rigorous testing on a benchmark dataset of high-resolution remote sensing images.
By amalgamating the strengths of dimensionality reduction and class discrimination
and by the utilization of kernel functions, K-LDA demonstrates efficacy in man-
aging complex, nonlinear data distributions. As such, K-LDA is a valuable asset
in pursuing accurate, reliable, and robust high-resolution remote sensing image
classification – an advancement with broad implications across various domains,
including land cover mapping, urban planning, and environmental monitoring.
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Future Scope

There are several avenues for future research and exploration. Investigating the
impact of different kernel functions in KLDA could provide a deeper understanding
of their effectiveness in class separability. Furthermore, the proposed methodology
can be extended to tackle more complex datasets with more classes or instances.
Evaluating the scalability of the approach on larger datasets and assessing its
computational efficiency will be critical for real-world applications. Conducting
comparative studies with other state-of-the-art classification methods would help
validate the competitiveness and generalizability of our approach across various
datasets and domains. Overall, this chapter lays the groundwork for future research
endeavors in feature extraction and classification techniques, offering new opportu-
nities for advancing the field of machine learning and its practical applications.
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