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Communications, Information Theory and Coding Theory

Bits
Modem:
bits to signal

Impairments

Noise
Modem:
signal to bits

Bits

Rate

SNR

Rate, Signal-to-Noise Ratio (SNR), Prob{Bits 6= Bits}

Metrics

Channel

Channel capacity:
function of SNR

Encode
msg

Decode
msg

Information theory: model channel and compute capacity
I If Rate < Capacity, Prob{Bits 6= Bits} can be as small as desired

Coding theory: encoders and decoders to approach capacity
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Research in Information Theory

Point-to-point
communications

Most capacity
problems solved

Performance
close to
capacity

Channels with
memory open

Multiterminal
communications

Most problems
are open

Practical systems
far from limits

Emerging areas:
beyond communications

Models and
limits of learning

Models and
limits for storage
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Runlength Constraint: No Consecutive 1s

Constrained binary sequence

Sequence of bits with no consecutive 1s

Extension to (d , k)-constrained sequence used in recording channels
(Marcus et al ’98)

Represented as a walk in a state diagram

s0 s10
1

0

Andrew Thangaraj (IIT Madras) Research in Information Theory October 10, 2016 6 / 44



How many such sequences?

AN = Number of length-N binary vectors with no consecutive 1s

N = 2: 00, 10, 01 - A2 = 3

N = 3: 000, 001, 010, 100, 101 - A3 = 5

N = 4: 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 - A4 = 8

For large N: AN ≈

(√
5 + 1

2

)N

1

N
log2 AN → log2

√
5 + 1

2

What happens when such a sequence is transmitted across a channel?
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Some Prior Work

Number of constrained sequences
I C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J., 1948.

Lower bounds for constrained BSC
I E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Trans. Inf.

Theory, 1988.

Lower and upper bounds
I D. M. Arnold, H. A. Loeliger, P. O. Vontobel, A. Kavcic, and W. Zeng,

“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. on Inf. Theory, 2006.

I P. Vontobel and D. Arnold, “An upper bound on the capacity of
channels with memory and constraint input,” in IEEE ITW 2001.

I Y. Li and G. Han, “Input-constrained erasure channels: Mutual
information and capacity,” in IEEE ISIT 2014.

Feedback capacity for erasure channel (which serves as upper bound)
I O. Sabag, H. H. Permuter, and N. Kashyap, “The feedback capacity of

the binary erasure channel with a no-consecutive-ones input
constraint,” IEEE Trans. on Inf. Theory, Jan 2016.
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Binary Erasure Channel (BEC) Model

0

1

0
1− ε

1
1− ε

?
ε

ε

BEC(ε)

Elias ’54
Capacity: 1− ε bits per channel use

Bits {0, 1, ?}’s

Every bit gets erased independently with probability ε

Simple model that captures the essence of the problem
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Noisy Constrained Channels

BEC(ε)
XN

no consecutive 1s

Y N

C (ε): Capacity of constrained channel

C (ε) = lim
N→∞

1

N
max

p
XN :XN∈XN

d,k

I (XN ;Y N)

Capacity of constrained noisy channels: has proven to be difficult to
characterize or bound even for simple channels

[A. Thangaraj, “Dual Capacity Upper Bounds for Noisy Runlength Constrained

Channels,” presented at IEEE Information Theory Workshop 2016]

Dual bound:
C (ε) ≤(1− ε)2 log2(1/β) + ε(1− ε) log2(2− β),

β ∈ (0, 1] solves β2(1−ε) = 1− β
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Plot: Binary Erasure Channel
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Remarks

Main technique: Dual Capacity Upper Bound

Dual capacity bound is useful in scenarios where characterizing the
exact capacity is difficult.

I Related work: A. Thangaraj, G. Kramer, and G. Böcherer, “Capacity
upper bounds for discrete-time amplitude-constrained AWGN
channels,” in IEEE ISIT 2015, https://arxiv.org/abs/1511.08742.

In my work, dual capacity bound was used for noisy constrained
channels

I (d , k)-constrained binary symmetric channel and binary-input Gaussian
channels

Future work
I Dual bounds for other channels with memory, such as the Inter Symbol

Interference (ISI) channel

Additional details: https://arxiv.org/abs/1609.00189
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ISI Channel with 1-bit Quantized Output

Channel
h = [h0, h1, . . . , hL−1]

Yn = h0Xn + h1Xn−1 + · · ·+ hL−1Xn−L+1

Xn ∈ R
+

Yn

Zn ∼ N(0, σ2)

x

Q(x)

+1

-1

Rn Q(Rn)

Continuous input, 1-bit quantized output (why this model?)

Average power constraint: E [‖X‖2] ≤ NP

Problem: How to signal?

ISI channel with continuous output: Inner equalizer + Outer code

ISI channel with 1-bit output: How to equalize?

Andrew Thangaraj (IIT Madras) Research in Information Theory October 10, 2016 14 / 44



Prior Work vs This Work

Why ISI with continuous input, quantized output?
I Millimeter-wave [Sun et al ’14], SERDES [Harwood et al ’07]

Prior work
I ISI with continuous input/output: [Hirt-Massey ’88],

[Shamai-Ozarow-Wyner ’91], [Shamai-Laroia ’96]
I Non-ISI quantized output: [Singh-Dabeer-Madhow ’09]
I ISI, optimize quantizer at receiver: [Zeitler-Singer-Kramer ’12]
I Millimeter wave, 1-bit quantized output: [Mo-Heath ’14]

This work: Equalizers (transmitter block precoding) for ISI channels
with continuous input, 1-bit quantized output
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Threshold Precoder and Noisefree Approximation

δ-threshold precoding for 1-bit quantized ISI channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N

+
Yn

|Yn| ≥ δ

Zn ∼ N(0, σ2)

x

Q(x)
+1

-1

Rn Q(Rn)

Choose {Xn} with threshold constraint: |Yn| = |
∑L−1

i=0 hiXn−i | ≥ δ

Noisefree approximation of threshold-precoded channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N x

Q(x)
+1

-1

Yn

|Yn| ≥ δ
Sn

Approximation error: P(Sn 6= Q(Rn)) ≤ Q(δ/σ)

Andrew Thangaraj (IIT Madras) Research in Information Theory October 10, 2016 16 / 44



Threshold Precoder and Noisefree Approximation

δ-threshold precoding for 1-bit quantized ISI channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N

+
Yn

|Yn| ≥ δ

Zn ∼ N(0, σ2)

x

Q(x)
+1

-1

Rn Q(Rn)

Choose {Xn} with threshold constraint: |Yn| = |
∑L−1

i=0 hiXn−i | ≥ δ

Noisefree approximation of threshold-precoded channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N x

Q(x)
+1

-1

Yn

|Yn| ≥ δ
Sn

Approximation error: P(Sn 6= Q(Rn)) ≤ Q(δ/σ)

Andrew Thangaraj (IIT Madras) Research in Information Theory October 10, 2016 16 / 44



Threshold Precoder and Noisefree Approximation

δ-threshold precoding for 1-bit quantized ISI channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N

+
Yn

|Yn| ≥ δ

Zn ∼ N(0, σ2)

x

Q(x)
+1

-1

Rn Q(Rn)

Choose {Xn} with threshold constraint: |Yn| = |
∑L−1

i=0 hiXn−i | ≥ δ

Noisefree approximation of threshold-precoded channel

Channel
h = [h0, h1, . . . , hL−1]

Xn ∈ R
0 ≤ n < N x

Q(x)
+1

-1

Yn

|Yn| ≥ δ
Sn

Approximation error: P(Sn 6= Q(Rn)) ≤ Q(δ/σ)

Andrew Thangaraj (IIT Madras) Research in Information Theory October 10, 2016 16 / 44



Signaling Method: Precoder + Outer Code

Precoder + Outer code for the noisy channel

Enc

E[‖X‖2]≤NP

|Yn| ≥ δ
Outer
Enc

Rout ≈ 1− H2(Q(δ/σ))

Sn

Rin = H(SN)
N

Channel
h

Xn
+

Yn

Zn ∼ N(0, σ2)

Q(·)
Rn

Outer
Dec

Q(Rn)

[R. Ganti, A. Thangaraj and A. Mondal, ”Approximation of Capacity for ISI Channels

with One-bit Output Quantization,” IEEE ISIT 2015.]
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Numerical Example I: Channel [1 ε]
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Numerical Example II: Channel [-0.3, 1, 0.6]
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Remarks

Signaling method for ISI channels with 1-bit ouput
I Precoder + Outer error control code

Design of precoder
I Threshold precoding
I Use of noisefree approximation, Gibbs sampling: optimal

Achievable schemes
I Zero-forcing Markov: good practical method

Future
I Several applications in 5G and mmwave
I Extensions to MIMO
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The Secretary Problem: “Online” Interview

Goal: Select candidate with best score
or weight
(C1) Interview one at a time
(C2) Decide online: select or reject
(C3) Rejected cannot be called back
(C4) No more interviews after selection

n candidates

7

w1 w2

· · ·

wi−1

3

wi

End of interview

Central question: How good is online compared to offline?

Offline interview always hires applicant with maximum score. Can an
online interview do the same?
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Model for Candidates and Order of Interview

n candidates

wi1 wi2

· · ·

win

Fixed n and weights: w1, w2, . . ., wn

Order of interview is uniformly random
{i1, i2, . . . , in}: permutation of {1, 2, . . . , n}, uniformly random

Offline (knows permutation) vs Online

In how many of the n! permutations, can an online interview select the
candidate with maximum weight?
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Online Algorithm A(r) for the Secretary Problem

n candidates

7

wi1 wi2

· · ·

wir wir+1

· · ·

wir+j−1

3

wir+j

Reject first r candidates

Find best weight, so far: T = max(wi1 ,wi2 , . . . ,wir )

From subsequent candidates, select first one with weight ≥ T

If there is none, select last candidate
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Offline versus Online A(r)

Offline algorithm
I Knows entire sequence of weights ahead of time: wi1 , wi2 , . . ., win
I Suppose m-th candidate has maximum weight wim
I Reject candidates 1 to m − 1
I Select candidate m

Online algorithm A(r)
I Surprise! In nearly 36% of the cases, A(r) will select candidate m
I Best choice for r : r = n/e
I Fraction of successes is independent of n
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Analysis of Online Algorithm A(r)

Max weight candidate comes before r : not selected

1 2 · · · r r + 1 · · · n

Max weight candidate at r + 1: selected always

1 2 · · · r r + 1 · · · n

Max weight candidate at r + j : selected with some probability

1 2 · · · r r + 1 · · · r + j n

3
7

1 2 · · · r r + 1 · · · r + j n

3

Prob: r/(r + j − 1)
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Probability Calculation

Pr{Selecting Top Applicant}

=
n−r∑
j=1

Pr{Top applicant in r + j} Pr{Best in first r + j − 1 within r}

=
n−r∑
j=1

1

n

r

r + j − 1
=

r

n

n−1∑
i=r

1

i

≈ r

n
log

n

r
, maximised by choosing r = n/e

=
1

e
≈ 0.36.
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Basestation Allocation Problem

1 2

3 4

basestation

user

1

w1 w1

w1 w1

2

w2
w2

w2 w2

3
4

5

6

7

8
9

Basestation allocation

Allot n users to one out of m basestations
wi : weight of user i to all basestations
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Time-sharing Utility at the Basestation

1 2

3 4

basestation (BS)

user

1

2

3
4

5

6

7

8 9

w1

w2

w1/2

w2/2

w1/3

w2/3

w7/3

w3/3
w4/3

w5/3

w6/2

w8/2 w9

Mj : users allotted to BS j

dj = |Mj |

Time-sharing utility: Total rate from all basestations
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Basestation Allocation: Offline vs Online

Goal of allocation: maximize time-sharing utility

Find M1, M2, . . . such that

(∑
i∈M1

wi

d1

)
+

(∑
i∈M2

wi

d2

)
+ · · · is

maximized.

Offline
I sequence of user weights {wi} is known before arrival
I what is the best offline algorithm?

Online
I weight of i-th user wi is revealed at time i
I user i needs to be allotted a basestation at time i
I allotment of user i cannot be changed later

Main question: Fix n and weights w1,w2, . . . ,wn

Users arrive in uniformly random order. How good are online algorithms
compared to offline?
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Optimal Offline Algorithm

How to maximize time-sharing utility?(∑
i∈M1

wi

d1

)
+

(∑
i∈M2

wi

d2

)
+ · · ·

Intuition: Allot high weight users to basestations with low d

Optimal offline allocation: n users to m basestations

Find top m − 1 users

Allot them individually to m − 1 basestations

Assign other n −m + 1 users to basestation m

More details and proof:
http://arxiv.org/abs/1308.1212

1
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4

5
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7

8

9

1

2

3

4

Best utility = w1 + w2 + w3 +
1

n − 3
(w4 + · · ·+ wn)

Assume: w1 > w2 > · · · > wn, m = 4
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From Secretary Problem to Basestation Allocation

Optimal offline allocation: m = 2 basestations

Find max weight user

Assign max weight user to basestation 1

Assign other n − 1 users to basestation 2

1

2

3

4

5

6

1

2

3

7

Secretary problem: select candidate with max weight online

Basestation allocation: identify max-weight user online

Online algorithm for m = 2 basestations

Run the algorithm A(r) for the secretary problem to select max weight
user for basestation 1 (change: do not stop after selection)
Allot all rejected users to basestation 2
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Online Algorithm Am(r) for m Basestations

Algorithm Am(r): Extension of A(r) to find top m − 1 users

1 Allocate the first r test users to basestation m, and compute the
(m − 1)-th best weight, denoted T , among the first r users.

2 For i > r , if weight ≤ T ,
1 Allocate user i to basestation m.

3 For i > r , if weight > T ,
1 Allocate user i to basestations 1 though m− 1 in a round robin fashion.
2 Update T to be the (m − 1)-th best weight seen so far.

How good is Am(r)?

For 2 ≤ m ≤ 20, Optimized r : ≈ 0.22n, and

Expected
Online utility

Offline utility
≥ 0.46
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Sketch of Computations

Basestation m: used for dumping “bad” users

Basestation 1 through m − 1: “good” users

Main computation: Pr{S = d}, where S : number of good users

P(S = d) =
∑

r+1≤i1<i2<
···<id≤n

 ∏
i∈{i1,i2,...,id}

m − 1

i


 ∏

r+1≤i≤n
i /∈{i1,i2,...,id}

1− m − 1

i


→
( r
n

)m−1 1

d!

(
(m − 1) loge

n

r

)d
Fact about permutations that is useful

I π: uniformly random permutation, bi = |{j : 1 ≤ j ≤ i , π(j) ≥ π(i)}|
I bi ∼ unif{1, 2, . . . , i}, independent of bi ′ for i ′ 6= i
I More details in http://arxiv.org/abs/1308.1212
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More Practical Scenario: Arbitrary Weights

1 2
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basestation

user

w61 w62

w63 w64

Arbitrary Weights

Each user has possibly different weights to each basestation:
wij , 1 ≤ j ≤ m
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Max Weight Matching Problem

Bipartite graph: G
I Edge e = (i , j) has weight we = wij

Matching M in G :
Set of non-intersecting edges

I Weight of matching = sum of weights of
edges in matching
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Max Weight Matching Problem

Find matching with maximum weight
Like “Secretary problem” for equal weights case, online Max Weight
Matching is used for basestation allocation in the arbitrary weights case.
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Arbitrary Weights: Online Algorithm

Idea: Randomized online allocation algorithm using an online bipartite
graph matching algorithm AM

HideandSeek Algorithm

Let j0 ∈ {1, 2, . . . ,m} be chosen uniformly at random.
G−j0 : G with basestation j0 deleted.

Use online algorithm AM to find the max-weight matching in the
graph G−j0 . Denote this matching as AM(G−j0).

Allocate the users in the matching AM(G−j0) to the m − 1
basestations other than j0, while all other users are allocated to
basestation j0 itself.
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Arbitrary Weights: Online versus Offline

Theorem

With randomized input the HideAndSeek algorithm has

Competitive ratio , Expected
Offline utility

Online utility
≤ 8m

m − 1
.

Proof.

E [weight(AM(G−j0))] ≥ m − 1

m
E [weight(AM(G ))],

since j0 is chosen uniformly at random.
Since AM is within 1/8 of the offline algorithm, the result follows.
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Simulation Results: Secretary-problem-based Algorithm
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Simulation Results: HideAndSeek versus Max-weight
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Summary Remarks

Online algorithms
I Good candidates for practical use.
I Constant competitive ratio under random user arrivals.
I Robust to statistical misspecification.

Max-weight algorithms versus HideandSeek
I Max-weight association has average-case competitive ratio n (can be

shown).
I The competitive ratio of HideAndSeek algorithm is 8m/(m − 1).
I In practice, under correlated user weights, HideandSeek outperforms

max-weight.

More details: http://arxiv.org/abs/1308.1212

Extension: K. Thekumparampil, A. Thangaraj and R. Vaze,
”Combinatorial Resource Allocation Using Sub-modularity of
Waterfilling,” IEEE Transactions on Wireless Communications, vol.
15, no. 1, pp. 206-216, January 2016.
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Conferences and Schools

National Conference in Communications (NCC)
I Premier annual communications conference in the country
I NCC 2017 is at IIT Madras

F http://www.ncc2017.org/
F Submission deadline: Oct 31, 2016

Joint Telematics Group/IEEE Information Theory Society Summer
School

I Held annually at IIT Madras, IISc Bangalore or IIT Bombay
I 8-hour courses on two or three topics
I 2016L http://www.ece.iisc.ernet.in/ jtg/2016/

Signal Processing and Communications Conference (SPCOM)
I Held once in two years at IISc Bangalore
I This year’s conference website: http://ece.iisc.ernet.in/ spcom/2016/

International Conference on Communication Systems and Networks
(COMSNETS): http://www.comsnets.org/
Premier international conferences in Information Theory

I IEEE International Symposium on Information theory
I IEEE Information Theory Workshop
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Opportunities at IIT Madras

MS/PhD programmes
I https://research.iitm.ac.in/
I Deadline for Jan-May 2017: October 24
I Final year UG, PG students can apply

Summer fellowships
I https://sfp.iitm.ac.in/

MoU between NITT and IITM
I Facilitates student exchange and joint research
I Top 10% of 3rd year undergraduate students

F can apply for direct PhD programme at the end of 3rd year
F if admitted, can spend final year at IIT Madras and then continue on to

PhD
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