

| COURSE PLAN – PART I                        |                                 |                             |                        |  |
|---------------------------------------------|---------------------------------|-----------------------------|------------------------|--|
| Nameoftheprogrammeandspecialization         |                                 |                             |                        |  |
| Course Title                                | ADVANCED PRODUCTION PROCESS LAB |                             |                        |  |
| Course Code                                 | PR607                           | No. of Credits              | 02                     |  |
| Course Code of Pre-<br>requisite subject(s) | -                               | -                           | -                      |  |
| Session                                     | July 2019                       | Section<br>(if, applicable) | -                      |  |
| Name of Faculty                             | Dr.K.PANNEERSELVAM              | Department                  | Production Engineering |  |
| Email                                       | kps@nitt.edu                    | Telephone No.               | 04312503515            |  |
| NameofCourseCoordinator(s)(if, applicable)  | -                               |                             |                        |  |
| E-mail                                      | -                               | Telephone No.               | -                      |  |
| Course Type                                 | Core Course                     | Elective Co                 | urse                   |  |
| <b>COURSE OVERVIEW</b>                      |                                 |                             |                        |  |

This course is to teach the advances in Production processes for fabrication, characterization, Machining and Joining of Advanced materials in such a way that the students can understand and use it in practical applications.

### **COURSE OBJECTIVES**

- 1. Describe manufacturing and characterization of advanced materials.
- 2. Perform joining & machining of advanced materials.
- 3. Apply advanced materials for recent industrial applications & confront environmental issues.



# **COURSE OUTCOMES (CO)**

**COURSE OUTCOMES** 

| Co1. | Describe n    | nanufac | turing | and  |
|------|---------------|---------|--------|------|
| cha  | racterization | n of    | advai  | nced |
| ma   | terials.      |         |        |      |
| cha  | racterization |         | 0      |      |

- Co2. Perform joining & machining advanced materials
- **Co3.** Apply advanced materials for recent industrial applications & confront environmental issues.

#### **Aligned Program Outcomes (PO)** COURSE OUTCOMES **Program Outcomes (PO)** 5 6 1 2 3 4 7 8 9 10 11 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ CO1 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ CO2 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ CO3 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$

| SI.<br>No | Attributes                                     | Programme Outcomes (POs):<br>On successful completion of the programme the students will be<br>able to                                                                                                                                                                                                                                                          |  |  |  |  |
|-----------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.        | Scholarship of<br>Knowledge                    | Acquire in depth knowledge in Manufacturing technology with an ability to define, evaluate, analysis and synthesize existing and new knowledge.                                                                                                                                                                                                                 |  |  |  |  |
| 2.        | Critical Thinking                              | Analyze problems critically; apply independent judgment f<br>synthesizing information to make intellectual and/or creati<br>advances for conducting research.                                                                                                                                                                                                   |  |  |  |  |
| 3.        | Problem Solving                                | Conceptualize and solve Manufacturing engineering problems an<br>evaluate optimal solutions considering economic and eco-friendl<br>factors                                                                                                                                                                                                                     |  |  |  |  |
| 4.        | Research Skill                                 | Develop scientific/ technological knowledge in Manufacturii<br>engineering through literature survey and design of experiments.                                                                                                                                                                                                                                 |  |  |  |  |
| 5.        | Usage of modern tools                          | Apply of IT tools such as CAD/CAE/CAM for modeling and<br>simulation of complex Manufacturing processes.                                                                                                                                                                                                                                                        |  |  |  |  |
| 6.        | Collaborative and multi-disciplinary work      | Perform collaborate multidisciplinary scientific Manufacturing<br>engineering research through self-management and team work.                                                                                                                                                                                                                                   |  |  |  |  |
| 7.        | Project Management<br>and Finance              | Demonstrate knowledge and understanding of Manufacturing<br>engineering and management and apply the same to one's ow<br>work, as a member and leader in team, manage project<br>efficiently in respective disciplines and multidisciplinar<br>environments after consideration of economic and financia<br>factors.                                            |  |  |  |  |
| 8.        | Communication                                  | Communicate with the engineering community, and with society a<br>large, regarding complex engineering activities confidently and<br>effectively, such as, being able to comprehend and write effective<br>reports and design documentation by adhering to appropriate<br>standards, make effective presentations, and give and receiven<br>clear instructions. |  |  |  |  |
| 9.        | Life-long Learning                             | Recognize the need for, and have the preparation and ability<br>engage in life-long learning independently, with a high level<br>enthusiasm and commitment to improve knowledge a<br>competence continuously.                                                                                                                                                   |  |  |  |  |
| 10.       | Ethical Practices and<br>Social Responsibility | Acquire professional and intellectual integrity, professional code of<br>conduct, ethics of research and scholarship, consideration of the<br>impact of research outcomes on professional practices and an<br>understanding of responsibility to contribute to the community for<br>sustainable development of society.                                         |  |  |  |  |
| 11.       | Independent and<br>Reflective Learning         | Observeand examine critically the outcomes of one's actions and<br>make corrective measures subsequently and learn from mistakes<br>without depending on external feedback.                                                                                                                                                                                     |  |  |  |  |



| COUR     | SE TEACH    | ING AND LEARNING ACTI                                                                                       | VITIES              |                                   |                                   |                       |
|----------|-------------|-------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|-----------------------------------|-----------------------|
| S.No     | Week        | Experiment                                                                                                  |                     |                                   | ]                                 | Mode of Delivery      |
| 1.       | Week:1      | Course plan details and Moodle registration                                                                 |                     |                                   | C&T / PPT                         |                       |
| 2.       | Week:2      | Experiment -1:Sample preparation by Injection<br>molding                                                    |                     |                                   | Theoretical, practical and Moodle |                       |
| 3.       | Week:3      | Experiment -2: Sample preparation by Compression molding                                                    |                     |                                   | Theoretical, practical and Moodle |                       |
| 4.       | Week:4      | Experiment -3:Tensile testing of Injection molding specimens                                                |                     | Theoretical, practical and Moodle |                                   |                       |
| 5.       | Week:5      | Experiment -4:Impact testing of Composite materials                                                         |                     |                                   | Theoretical, practical and Moodle |                       |
| 6.       | Week:6      | <b>Experiment -5:Calculation of MFI</b>                                                                     |                     | Theoretical, practical and Moodle |                                   |                       |
| 7.       | Week:7      | Buffer lab Class-1*                                                                                         |                     | Theoretical, practical and Moodle |                                   |                       |
| 8.       | Week:8      | Experiment -6:Drilling of PMC                                                                               |                     | Theoretical, practical and Moodle |                                   |                       |
| 9.       | Week:9      | Experiment -7:Milling of PMC                                                                                |                     |                                   | Theoretical, practical and Moodle |                       |
| 10.      | Week:10     | Experiment -8:Turning of PMC                                                                                |                     | Theoretical, practical and Moodle |                                   |                       |
| 11.      | Week:11     | <b>Experiment -9:Fusion welding of TPC/PMC</b>                                                              |                     | Theoretical, practical and Moodle |                                   |                       |
| 12.      | Week:12     | Experiment -10:Resistant welding of TPC/PMC                                                                 |                     | Theoretical, practical and Moodle |                                   |                       |
| 13.      | Week:13     | Buffer lab Class-2*                                                                                         |                     | Theoretical, practical and Moodle |                                   |                       |
| 14.      | Week:14     | Final Exam using moodle                                                                                     |                     | Using Moodle                      |                                   |                       |
| COUR     |             | SMENT METHODS                                                                                               |                     |                                   |                                   |                       |
| S.No.    |             | ASSESSMENT                                                                                                  | WEEK/DATE           | DURAT                             |                                   | % WEIGHTAGE           |
| 1.       | and Viva    | Report submission (50% wt.)<br>voce questions using moodles<br>each Experiment.                             | -                   | 120 Minu                          | nutes 70%                         |                       |
| 2.       |             | n using moodles flat form                                                                                   | -                   | 60 Minut                          | es                                | 30%                   |
| Impor    | tant Note:  |                                                                                                             | 1                   |                                   |                                   | 1                     |
| 1.<br>2. | Students wh | are expected to attend all the lab<br>to are absent for the regular labor<br>b class* with 50% weightage of | oratory session are | e allowed t                       | o do t                            | he experiment only in |

the buffer lab class\* with 50% weightage of the particular experiment. Relative Grading with a passing minimum is as per our institute norms. 3.



#### ESSANTIAL READINGS

#### **References:**

- 1. Mein Schwartz., "Composite Materials Handbook", McGraw Hill, 1984
- 2. "ASM Hand book on Composites", Volume 21, 2001
- 3. "Handbook of Plastics Joining-A Practical Guide", Plastics Design Library, 13 Eaton Avenue, Norwich, New York 13815.
- 4. Leonard Hollaway "Handbook of Polymer Composites for Engineers", British Plastics Federation.
- 5. Edward ArnoM.J. Madou, "Fundamentals of Micro Fabrication", CRC Press, 2002
- 6. V.K.Jain, "Introduction to Micromachining", Narosa Publishing House, 2010
- 7. Mark J. Jackson, "Micro Fabrication and Nano machining", Taylor and Francis, 2006

8. Serope Kalpakjian, "Manufacturing Engg. and Technology", Pearson Education, 2005

#### **COURSE EXIT SURVEY**

Mention the ways in which the feedback about the course is assessed and indicate the attainment also:

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire (Mid of the semester & End of the semester)

#### MODE OF CORRESPONDENCE (email/ phone etc.)

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes schedule of assessment course material any other information regarding this course) will be done through their webmail only.
- 2. Queries (if required) may be emailed to me / contact me during 4.00 pm to 5.00 pm on Monday and Friday with prior intimation for any clarifications.

ATTENDANCE (A uniform attendance policy as specified below shall be followed)

Attendance will be taken by the course faculty in all the contact hours.

- > At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

#### ACADEMIC HONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

#### ADDITIONAL COURSE INFORMATION

The faculty is available for consultation at times as per the intimation given by the faculty. Queries may also be emailed to the Course Faculty directly at <u>kps@nitt.edu</u>

FOR APPROVAL **Course** Faculty CC Chairperson HOD