DEPARTMENT OF PRODUCTION ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

		COURSE PLAN	N- PART I	
Course Title	UN	CONVENTIONAL	MACHINING PRO	OCESSES
Course Code	PR	MI12	No. of Credits	03
Course Code of Pre- requisite subject(s)	-			
Session	Jul	y. 2018	Section (if, applicable)	-
Name of Faculty	Dr.	V. Anandakrishnan	Department	Production Engg.
Email	kris	shna@nitt.edu	Telephone No.	0431-2503521
Name of Course Coordinator(s) (if, applicable)	-			
E-mail			Telephone No.	
Course Type		Core course	Elective course	✓ Minor Course
Syllabus (approved in I	3oS)			
Unconventional machini	ng Pr	cocess – Need – classific	cation – Brief overview	W.
	AW	JM and USM). Work	2	Machining – Ultrasonic uipment used – Process
				rocess Parameters-Surface hing –Wire cut EDM –
techniques of applying	mask pme	sants - Process Paramo nt-Surface Roughness a	eters - Surface finish	M)-Etchants – Maskant - n and MRR-Applications. ircuit-Process Parameters-
Laser Beam machining Machining (EBM). Prince		0 , 1	0 1	AM) and Electron Beam ues – Applications.
COURSE OBJECTIVI	ES			
manufacturing fie	eld.	eral non-traditional n		n micro and precision
COURSE OUTCOME			itals considering their	inerits and dements.
Course Outcomes	0 (0	0)		Aligned Programme Outcomes (PO)
Understand the contr micro and precision ma			nachining process in	1,2,3,6,7
2. Select suitable machin	ing p	rocess for suitable mate	rials	1,3,5,11
3. Summarizes the m manufacturing process	erits	and demerits of	the non-traditional	1,2

COURSE PLAN - PART II

COURSE OVERVIEW

This course will provide knowlegde about several non-traditional and advanced machining processes, machining parameters and application in micro and precision manufacturing field.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week Topic		Mode of Delivery	
1	Week 1	Introduction - Classification		
2		Process economy – Needs		
3		Mechanical machining - Types		
4	Week 2	Abrasive Jet Machining (AJM) Operating principle, Working		
5		Abrasive Jet Machining (AJM) Process parameters – MRR- Applications		
6		Water Jet Machining (WJM) Operating principle - Working		
7	Week 3	Water Jet Machining (WJM) Process parameters – MRR- Applications		
8		Abrasive Water Jet Machining (WJM) Operating principle - Working		
9		Abrasive Water Jet Machining (WJM) Process parameters – MRR- Applications		
10	Week 4	Ultrasonic machining (USM) Operating principle - Working		
11		Ultrasonic machining (USM) Process parameters – MRR- Applications		
		Cycle Test 1	PPT, Chalk Board	
12		Electric discharge machining- Introduction- working principle		
13	Week 5	Electric discharge machining- equipment- construction, Various Process Parameters		
14		Effects of process parameters on Surface Finish, MRR, Tool -Tool Wear		
15		Dielectric - Flushing and Applications		
16	Week 6	Wire Electric discharge machining- Introduction- working principle		
17		Wire Electric discharge machining- equipment- construction, Various Process Parameters		
18		Effects of process parameters on Surface Finish, MRR, Tool -Tool Wear		
19	Week 7	Dielectric – Flushing and Applications		
20		Chemical machining - Etchants - Maskant - techniques of applying maskants		
21		Chemical machining- Process Parameters – Surface finish and MRR-Applications		

22	Week 8	Principles of ECM- equipment-Surface Roughness and MRR	
23		Electro-Chemical machining- Etchants – Maskant -techniques of applying maskants	
24		Electro-Chemical machining- Process Parameters – Surface finish and MRR- Applications	
25	Week 9	Principles of ECM- equipment-Surface Roughness and MRR	
26		ECH - Principle, working, equipment	
27		ECG- Principle, working, equipment	
	Taranta ava	Cycle Test 2	
28	Week 10	Laser Beam machining - Principles - Equipment	PPT, Chalk Board
29		Laser Beam machining- Types - Beam control techniques - Applications.	
30		Laser Beam drilling- Principles - Equipment	
31	Week 11	Laser Beam drilling - Types - Beam control techniques - Applications.	
32		Plasma Arc machining- Principles - Equipment	
33		Plasma Arc machining Types - Beam control techniques - Applications.	
34	Week 12	Electron Beam Machining- Principles - Equipment	
35		Electron Beam Machining- Types - Beam control techniques - Applications.	
		Final Semester Examination	

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Cycle Test 1 Week 4		1 hour	20 marks
2.	Cycle Test 2	Week 9	1 hour	20 marks
3.	Assignments 1&2 Week 4 & 9		1 week	10 marks
4.	Re-Test	Week 12	1 hour	20 marks
4.	Final Examination	Week 12	3 hours	50 marks
		Total	100 marks	

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- l. Class committee meetings
- 2. Feedback through MIS

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Attendance:

- 1. At least 75% attendance in each course is mandatory.
- 2. A maximum of 10% shall be allowed under On Duty (OD) category.
- 3. Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

Assessment:

- 1. Attending all the assessments are MANDATORY for every student.
- 2. One Compensation Assessment (CPA) will be conducted for those students who are being physically absent due to valid reasons for any of the assessment and it covers the entire contents of the course.
- 3. At any case, CPA will not be considered as an improvement test.

Academic Honesty & Plagiarism:

- 1. Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- 2. Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- 3. The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- 4. The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL COURSE INFORMATION

Contact the Course Teacher: Dr.V. Anandakrishnan

Room No.: MTB304 / 2nd Floor / Manufacturing Technology Building

Timings: Office Hours
Email ID: krishna@nitt.edu
Telephone No.: 0431-250-3521

FOR SENATE'S CONSIDERATION

Course Faculty

c. S.72. NC,

CC-Chairperson_

HOD