DEPARTMENT OF PRODUCTION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I					
Name of the programme and specialization	B.Tech PRODUCTION ENGINEERING				
Course Title	PRPC13 METALLURGY AND MATERIALS ENGINEERING				
Course Code	PRPC13		No. of Credits	03	03
Course Code of Pre- requisite subject(s)		nistry I and nistry II			
Session	11110/ 2018		Section (if, applicable)		A & B
Name of Faculty			TION ENGG		
Email			566 15876		
Name of Course Coordinator(s) (if, applicable)					*
E-mail			elephone No.		
Course Type	٧	Core cours	e Elec	tive cours	е
Syllabus (approved in	BoS)				
Art and science of	metalli	urgy-structure of metals	and alloys-phase a	nd structura	l constitutions-
Equilibrium diagrams					
	d allow	s-Fe-Fe3C diagram-Effe	et of allowing alam	ants in stag	l Classification
of ferrous alloys and their	5/15				
		ys- composition-properti			
zinc, aluminium, Mg and	Ti alloy	s-Heat treatment of Non	Ferrous alloy-Non	Metallic M	etals and alloys-
ceramic material- polymer	s-comp	osite material - Nano-st	ructured materials		
Testing of Materia	ls-Non	-Destructive Testing, Te	ensile testing, com	pression tes	ting - Hardness
Testing					
Testing of Materials-Im	pact to	esting, Fatigue testing.	Creep, other re	lated tes	ting methods
characterization of TEM,	KRD, S	EM			
Practice:	,				
Microstructural study of carbon steels, Cast Iron Jominy end quench test – Heat Treatments on					
steels – Hardening – Annealing – Normalizing – Tempering Demonstration on SEM/XRD					
COURSE OBJECTIVES					
• To test materials through various testing methods to evaluate their properties & understand the					
physical metallurgy.					
To understand and conduct heat treatment processes for metals					
COURSE OUTCOMES (CO)					
Course Outcomes Aligned Programme					
Outcomes (PO)				es (PO)	
1.Interpret microstructure of engineering materials and explain Equilibrium diagrams. 1,6,9,12					

2.	Classify ferrous alloys and their applications with respect to foundry and		
	welding processes	1,6,7,9,12	
3.	Understand heat treatment processes for alloys, non alloys &		
SU	summarize testing methods like TEM, XRD, SEM	1,6,9,12	

COURSE PLAN - PART II

COURSE OVERVIEW

- > Studies regarding Engineering materials and microstructure
- > Developing Equilibrium Diagram for Ferrous and Non Ferrous metals
- > Testing of materials with different testing methods.
- Working with foundry and welding processes.
- Understanding heat treatment processes for alloys, non alloys
- > Analysis of characterization using TEM, XRD, SEM

COURSE TEACHING AND LEARNING ACTIVITIES

S.No	Week	Topic	Mode of Delivery	
1		Art of metallurgy		
2	1 st	Science of metallurgy	PPT, C&T VIDEO	
3		Structure of metals	VIDEO	
4		Structure of alloys-phase		
5	2 nd	Phase constitutions	DDT COT	
6		Structural constitutions	PPT, C&T VIDEO	
7		Equilibrium diagrams		
8	3 rd	Equilibrium diagrams	DDT COT	
9		Ferrous metals and alloys	PPT, C&T VIDEO	
10		CCT diagram		
11	4 th	Surface hardening process	PPT, C&T	
12		Non Ferrous Metals Alloys - composition	VIDEO	
13		Non Ferrous Metals Alloys - properties		
14	5 th	Applications of copper, nickel, lead, tin,	PPT, C&T	
15		Applications of zinc, aluminium, Mg and Ti alloys	VIDEO	
16		Heat treatment of Non Ferrous alloy	PPT, C&T	
17	-	CYCLE TEST 1		
18	6 th	Heat treatment of Non Metallic Metals and alloys		
19	0	Heat treatment of ceramic material	9	

20		Heat treatment of polymers	PPT, C&T VIDEO	
21		Heat treatment of composite material	VIDEO	
22	7 th	Heat treatment of Nano structured materials	PPT, C&T	
23		Testing of Materials-Non-Destructive Testing	VIDEO	
24	V V	Testing of Materials-Tensile testing, compression testing		
25	8 th	Testing of Materials-Hardness Testing	DDT C&T	
26	8	Testing of Materials-Impact testing, Fatigue testing	PPT, C&T VIDEO	
27		Testing of Materials- Creep, other related testing		
28		Characterization of TEM, XRD, SEM		
29	9 th	Microstructural study of carbon steels, Cast Iron	PPT, C&T	
30		Jominy end quench test –	VIDEO	
31		Heat Treatments on steels – Hardening – Annealing		
32	10 th	Heat Treatments on steels – Normalizing – Tempering	PPT, C&T	
33		Demonstration on SEM/XRD	VIDEO	
34		CYCLE TEST 2		

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle test -1	August 3 rd week	60 Minutes	20
2	Cycle test -2	September 3 rd week	60 Minutes	20
3	Assignment	Once in four weeks		10
СРА	Compensation Assessment*	November 2 nd week	60 Minutes	20
4	Final Assessment *	November 3 rd week	180 Minutes	50

^{*}mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback from the students during class committee meeting.
- 2. End semester feedback on course outcomes

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Phone and E-mail

COMPENSATION ASSESSMENT POLICY

60 minutes examination including all syllabus.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION			
ADDITIONAL INFORMATION			
	_		
9			
FOR APPROVAL			
	Mc	2 ME	
Sala		a C.M.	Take
Course Faculty	CC-Chairperson _	HC.	DD when

Guidelines:

- a) The number of assessments for a course shall range from 4 to 6.
- b) Every course shall have a final assessment on the entire syllabus with at least 30% weightage.

- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered. Details of compensation assessment to be specified by faculty.
- d) The passing minimum shall be as per the regulations.
- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.