DEPARTMENT OF PRODUCTION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I								
Course Title	MECHATRONICS AND INDUSTRIAL AUTOMATION (Theory & Lab)							
Course Code	PRPC27	No. of Credits	3					
Course Code of Pre- requisite subject(s)	-	-	-					
Session	January 2018	Section (if, applicable)	Α					
Name of Faculty	Dr.K.Panneerselvam	Department	Production Engineering					
Email	kps@nitt.edu	Telephone No.	04312503515					
Name of Course								
Coordinator(s)	-							
(if, applicable)								
E-mail	-	Telephone No.	-					
Course Type	Core course	Elective cou	ırse					
Syllabus (approved in BoS)								

PRPC27 MECHATRONICS AND INDUSTRIAL AUTOMATION (Theory & Lab)

Introduction - overviews, principles and application of hydraulic, pneumatic, electric controls system. Hydraulic system, hydraulic components - pressure-flow-direction controls valves – proportional , servo, cartridge(logic) valves- accumulator, accessories. Hydraulic components symbols- Design and application of hydraulic circuits of machine tool, press, Mobile hydraulic. Pneumatic system, pneumatic components - pressure-flow-direction controls valves - pneumatic components symbols- Design and application of pneumatic circuits of machine tool. Semi automats-automats-transfer lines - automatic assembly - transfer devices and feeders-classifications and applications-job orienting and picking devices- setting of automats and transfer lines. Introduction to mechatronics, mechatronics system, Microprocessors and their applications, Sensors and Principles, PLC system, examples of mechatronics systems.

https://www.nitt.edu/home/academics/curriculum/B.Tech-PR-2015.pdf

COURSE OBJECTIVES

- 1. Study and describe the fluid power (Hydraulic and Pneumatic) system, its components with symbols and circuits for industrial problems
- 2. Understand the concept and basics of Industrial automation for part picking, part orientation and transfer system
- 3. Understand the concept and basics PLC with Fluid power control system for the industrial circuits.

COURSE OUTCOMES (C	0)													
Course Outcomes	Aligned Programme Outcomes (PO)													
CO1. Identify the fluid	COURSE OUTCOMES Program Outcomes (PO)													
power system to	OUTC	OMES	1	2	3	4	5	6	7	8	9	10	11	12
meet industrial	CO1		,		1	1	1	1	1	1	1		1	1
automation needs.					$\overline{\mathbf{v}}$	N	N V	N	$\sqrt{1}$	N	N		N	<u>√</u>
CO2. Understand the concept and basics	CO2		1	N			N V	√			N		N	
of Industrial	CO3		\mathbf{N}	\mathbf{N}	\mathbf{N}	\checkmark		\checkmark		\mathbf{N}	1		\checkmark	\checkmark
automation.	PROC	PAM	MF O	UTCO	MFS	(POs)								
CO3. Apply PLCs	PROGRAMME OUTCOMES (POs) Sl. Programme Outcomes (POs):													
technology in fluid	No													
power system for	1													
providing solution	1.	1. Graduates will apply knowledge acquired in mathematics, science, engineering and humanities to production engineering problems.												
to industrial	2.													
automation.		designing and conducting experiments, interpreting and analyzing data for												
		manufacturing.												
	3.	3. Graduates will design manufacturing systems that would encompass machining								Ũ				
		technology, welding technology, metal forming, foundry technology and thermal engineering infrastructure and would meet specifications and												
		requirements as demanded by the customers.												
	4.	4. Graduates will apply design and tooling for manufacturing, finite element												
			nethods, modeling of manufacturing systems to solve production engineering											
	5	5. Graduates understand manufacturing technologies like computer controlled								led				
		processes and management information systems, production management,												
		SCM, ERP and new manufacturing concepts like TPS, agile manufacturing, pull												
		& push system.									• 1			
	6.	 Graduates will have the confidence to apply engineering solutions in globa societal Contexts. 									bal and			
	7.								delin	g and	analy	sis of a	a broad	array
		of systems-level decision problems concerned with economic efficiency, work												
	-	design, productivity and quality with environmental focus.												
	8.	Graduates should be capable of self-education and clearly understand the value of achieving perfection in their professional endeavors.												
	9.	Graduates will participate as members of engineering and science laboratory												
		teams, as well as members of multidisciplinary design teams.												
	10.	Graduates will be proficient in English language in both verbal and written												
		forms which will enable them to compete with graduates of international												
	11.	engineering institutions. 1. Graduates will exhibit competency in choosing and applying appropriate												
	11.	resource management technique(s) so as to optimally utilize resources in												
		manufacturing systems.												
	12.	12. Graduates will be broadly educated and will have an understanding of the impact of engineering on society and confront contemporary issues.												
		impa	ct of	engi	neering	g on so	ciety ai	nd con	front o	conter	npora	ry issu	es.	

COURSE PLAN – PART II

COURSE OVERVIEW

This course is to teach the principles and application of hydraulic, pneumatic, electric controls system in such a way that the students can understand and use it in practical applications. This course gives (i)Overall view of principles and application of Mechanical, hydraulic, pneumatic, electric controls system, (ii) Study on Hydraulic system, its components with symbols and Design of hydraulic circuits for industrial problems, (iii) Study on Pneumatic system, its components with symbols and Design of Pneumatic circuits for industrial problems, (iv)Study on semiautomatic system for part picking, part orientation and transfer system to Industrial automation and (v) Introduction to PLC and integrating it with Fluid power(Hydraulic and Pneumatic) system for Industrial automation.

COUR	SE TEACH	ING AND LEA	RNING ACTIVITIES	
S.No	Week		Торіс	Mode of Delivery
		Lecture-1.	Introduction to syllabus and Course plan details	
1.	Weeks :1	Lecture-2.	Introduction the moodle and registration in moodle	C&T/PPT
		Practical-1.	Introduction to the Labs and registration in moodle	
		Lecture-3.	Overviews, principles and application of hydraulic,	
2.	Weeks :2		pneumatic, electric controls system.	C&T/PPT
4.	WEEKS .2	Lecture-4.	Basic of Hydraulic Power system	
		Practical-2.	Introduction to Fluidsim software's environment	
		Lecture-5.	Hydraulic pumps and actuators	
3.	Weeks :3	Lecture-6.	Hydraulic valves(DCV)	C&T/PPT
		Practical-3.	Exercise-1	
	Weeks :4	Lecture-7.	Hydraulic valves(FCV)	
4.		Lecture-8.	Hydraulic valves(PCV)	C&T/PPT
		Practical-4.	Exercise-2	
	Weeks :5	Lecture-9.	Accumulators and accumulator circuits	
5.		Lecture-10.	Actuator control 5/2 valve	C&T/PPT
		Practical-5.	Exercise-3	
	Weeks :6	Lecture-11.	Sequential control for Repeated pattern	
6.		Lecture-12.	Hydraulic circuit design for Engineering application	C&T/PPT
		Practical-6.	Exercise-4	
7.	Weeks :7	Assign		
		Lecture-13.	Introduction to Pneumatic system	
8.	Weeks :8	Lecture-14.	Pneumatic Control System components	C&T/PPT
		Practical-7.	Exercise-5	
	Weeks :9	Lecture-15.	Pneumatic sequential Control System	
9.		Lecture-16.	Logic functions for poppet and spool valves	C&T/PPT
		Practical-8.	Exercise-6	
	Weeks :10	Lecture-17.	Electro Hydraulic /Pneumatic system	
10.		Lecture-18.	Pneumatic circuit design for Engineering application	C&T/PPT
		Practical-9.	Exercise-7	
	Weeks :11	Lecture-19.	Semi automats-automats-transfer lines -automatic assembly	
11.		Lecture-20.	Transfer devices and feeders-classifications and applications	C&T/PPT
		Practical-10.	Exercise-8	
12.	Weeks :12	-	nment-2 and Cycle Test-2(online test in Moodle flat form)	
	Weeks :13	Lecture-21.	Introduction to PLC system	
13.			Applications Sensors and PLC system	C&T/PPT
		Practical-11.	Exercise-9	
	Weeks :14	Lecture-23.	Applications of PLC system in Fluid power control system	
14.		Lecture-24. Practical-12.	Applications of PLC system in Fluid power control system	C&T/PPT
		Exercise-10 r week for Theory /Lab Class		
15.	Weeks :15		C&T/PPT	
16.	Weeks :16	-	ensation Assessment	
17.	Weeks :17	Final	Assessment *(End Semester Examinations for all B.Tech.)	
			C & T : Chalk and Talk PPT : Power Point	

	S.no.	Mode of assessment for theory	Week /date	Duration	Wt. %	Wt. % for final grading			
-	1	Assignment-1	Week-7		10				
	2	Cycle Test-1	Week-7	60 Minutes	15				
Theory	3	Assignment-2	Week-12		10	66.666			
The	4	Cycle Test-2	Week-12	60 Minutes	15	00.000			
	5	Compensation Assessment*	Week-16	60 Minutes	15				
	6	End Semester Examinations	Week-17	120 Minutes	50				
Lab	1	Continuous assessment for 10 lab exercises			100	33.333			
_			100						

Important Note:

- 1. Attending all the assessments (Assessment 1-4 and 6) are MANDATORY for every student.
- 2. If any student is not able to attend any one of the Assessment between (Assessment -1 to Assessment-4) due to genuine reason, student is permitted to attend the Compensation Assessment* with 15% weightage (15 marks).
- 3. In any case, Compensation Assessment* will not be considered as an improvement test.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Mention the ways in which the feedback about the course is assessed and indicate the attainment also:

- · Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire (Mid of the semester & End of the semester)

MODE OF CORRESPONDENCE (email/ phone etc.)

- All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes schedule of assessment course material any other information regarding this course) will be done through their webmail only.
- 2. Queries (if required) may be emailed to me / contact me during 4.00 pm to 5.00 pm on Monday and Friday with prior intimation for any clarifications.

ATTENDANCE

Attendance will be taken by the course faculty in all the contact hours.

ACADEMIC HONESTY & PLAGIARISM

Copying in any form during assessments is considered as academic dishonesty and will attract suitable penalty.

ADDITIONAL COURSE INFORMATION

The faculty is available for consultation at times as per the intimation given by the faculty. Queries may also be emailed to the Course Faculty directly at kps@nitt.edu

FOR APPROVAL

hered 11/11/18 **Course Faculty**

Chairperson

mm HOD