DEPARTMENT OF PHYSICS

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I						
Name of the program and specialization	M.Sc., Physics					
Course Title	Mathematical Physics - I					
Course Code	PH 651	No. of Credits	3			
Course Code of Pre- requisite subject(s)	Physics and Mathematical concepts in the B.Sc. level					
Session	July 2018	Section (if, applicable)	-			
Name of Faculty	Dr. Prabal Singh Verma	Department	Physics			
Email	psverma@nitt.edu	Telephone No.	-			
Name of Course Coordinator(s) (if, applicable)	Dr. Santhosh Kumar M.C.					
E-mail	santhoshmc@nitt.edu	Telephone No. +91-431-2503611				
Course Type	Core course	Elective cou	rse			
	•					

Syllabus (approved in BoS)

Unit – I: Vector Analysis Definition of vectors – scalar and vector product – triple products – gradient, divergence, curl – vector integration – Gauss's theorem – Green's theorem – Stoke's theorem – Dirac delta function – Helmholtz theorem.

Unit – II: Curved coordinates, Tensors Orthogonal coordinates – differential vector operators: gradient, divergence, curl – special coordinate systems: rectangular, spherical, cylindrical – tensors of rank two – contraction, direct product – quotient rule.

Unit – III: Linear Algebra Determinants – matrices – inner product, direct product – orthogonal matrices – Euler angles – symmetry properties – relation to tensors – Pauli matrices – eigenvalue equation and diagonalization – Cayley-Hamilton theorem – functions of matrices – hermitian matrices.

Unit – IV: Ordinary Differential Equations First order equation – second order homogeneous equation – Wronskian – second solution – inhomogeneous equation – forced oscillation and resonance – power series method – Hermite and Legendre equations – Frobenius method – Bessel equation.

Unit-V: Probability Definition – basic theorems – permutation and combination – method of counting – random variables – binomial and Poisson distributions – normal distribution – central limit theorem

COURSE OBJECTIVES

To introduce basic mathematical topics necessary to understand and appreciate various physical laws of nature.

COURSE OUTCOMES (CO)	
Course Outcomes	Aligned Programme Outcomes (PO)
On successful completion of this course,	
students will acquire enough mathematical skills to handle the courses on mechanics and Electromagnetic theory	Students will be capable of handling variety of courses on mechanics and electromagnetic theory.

COURSE PLAN – PART II

COURSE OVERVIEW

The Mathematical Physics - I course is offered in the first semester to M.Sc. (Physics) students. The subject has 3 credit weightage.

S.No.	Week/Contact Hours	Торіс	Mode of Delivery
1.	First 2- 3	Unit-I : Vector analysis	Lectures & Class room
	weeks	Definition of vectors, – scalar and vector product – triple products –gradient, divergence, curl –vector integration– Gauss's theorem, – Green's theorem Stoke's theorem – Dirac delta function Helmholtz theorem.	discussions
2.	Next 2- 3 weeks	Unit II: Curved Co-ordinates, Tensors Orthogonal coordinates – differential vector operators: gradient, divergence, curl –special coordinate systems: rectangular, spherical, cylindrical – tensors of rank two contraction, direct product – quotient rule	Lectures & Class room discussions

3.	Next 2- 3	Unit-III: Linear Algebra		Lectures & Class room				
	weeks	Determinants –matrices – inner p direct product –orthogonal matric angles –symmetry properties –re tensors –Pauli matrices – eigenv equation and diagonalization – C Hamilton theorem – functions of hermitian matrices.	discussions					
4.	Next 2- 3 weeks	Unit-IV: Ordinary Differential Equations First order equation – second order homogeneous equation –Wronskian – second solution – inhomogeneous equation forced oscillation and resonance – power series method – Hermite and Legendre		Lectures & Class room discussions				
		equations – Frobenius method – equation.						
5.	Next 2- 3	Unit-V: Probability	Lectures, power point					
	weeks	Definition – basic theorems – permutation and combination – method of counting – random variables – binomial and Poisson distributions – normal distribution – central limit theorem		and discussion				
	COURSE ASSESSMENT METHODS							
		-						
COURS S.No.	E ASSESSMENT Mode of Assessment	METHODS Week/Date	Duration	% Weightage				
	Mode of	-	Duration 1 week	% Weightage				
S.No.	Mode of Assessment	Week/Date						
S.No. 1	Mode of Assessment Assignment-I	Week/Date 4 th week	1 week	5%				
S.No. 1 2	Mode of Assessment Assignment-I Test-I	Week/Date 4 th week 6 th week	1 week 1 Hour	5%				
S.No. 1 2 3	Mode of Assessment Assignment-I Test-I Test-II	Week/Date 4 th week 6 th week 11 th week	1 week 1 Hour 1 Hour	5% 20% 20%				

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc

1. G. B. Arfken and H.J. Weber, Mathematical Methods for Physicists, 5th edition, Academic Press (2001).

2.E. Kreyszig, Advanced Engineering Mathematics,8thedition, John Wiley & SonsInc. (1999).3.Mathematical Methods in the Physical Sciences, 3rd edition, Mary L. Boas, Wiley - India (2011).

4. L.A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists, McGraw -Hill (1970).

5. P. Dennery and A. Krzywicki, Mathematics for physicists, Dover Publications Inc, New York (1996)

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Feedback from the students will be collected and analyzed after 15th week on knowledge

gained, subject's relevant to the course, methodology adopted, aspect of improvement,

fulfilment of the course outcome and program outcome etc.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc) : Email

COMPENSATION ASSESSMENT POLICY

> It is a test with duration of 60 min. Appropriate weightage will be calculated.

<u>ATTENDANCE POLICY</u> (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programs.

ADDITIONAL INFORMATION

- Cell Phones must be turned-off in the classroom. Usages of mobile phone during the lecture will be treated as punishable dishonesty.
- > The minimum passing marks shall be 40%.

FOR APPROVAL

CC-Chairperson HOD **Course Faculty**