NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	AF SCILL WAS TO		
Course Title	MAGNETISM AND SU	JPERCONDUCTIN	G LEVITATION
Course Code	PH683	No. of Credits	3
Department	Physics	Faculty	Dr. R. Justin Joseyphus
Pre-requisites Course Code		-	
Course Coordinator(s) (if, applicable)		Dr. N. Baska	aran
Other Course Teacher(s)/Tutor(s) E-mail	rjustinj@nitt.edu	Telephone No.	2503614
Course Type	Core course	√ Ele	ective course
COURSE OVERVIEW			**
The course 'magnetisr students as an elective superconducting materi	subject. The course of	offers topics on ma	offered to the M.Sc Physics agnetism, magnetic materials, acting levitation.
COURSE OBJECTIVE	S		
Learn the fund	e magnetic behavior	ism, supercondu	ting materials. activity and materials used
COURSE OUTCOMES	(CO)		
Course Outcomes			Aligned Programme Outcomes (PO)
Identify the magnimaterials used in Understand the consuperconductivity Classify the types superconducting	of magnetic and materials epts of magnetism a	vitation and	Obtain indepth knowledge on important Physics concepts Carry out independent research work in interdisciplinary areas

suj	perconducting I	naterials and methods for evitation	 Interact with professionals in related areas Communicate ideas and learn new technologies
COUR	SE LEACHING A	IND LEARNING ACTIVITIES	
S.No.	Week Total of 15 weeks	Торіс	Mode of Delivery
2.	First 3 weeks 3rd - 6th week	Magnetic moment – Magnetic Field – Field produced by solenoids – Lorentz Force Laws-BioSavart Law— Field and moment measurement – Demagnetizing field – Zeeman effect- Origin of magnetism- – g factor – Quantized angular momentum-Theory of diamagnetism. Langevin's theory of paramagnetism- quantum theory of paramagnetism- Brillouin Function – Molecular Field Theory of Ferromagnetism – Exchange Interaction – band theory – Antiferromagnetism – sublattice magnetization – Internal Fields- Crystal field effects	Lectures (C&T).
3.	6 th – 9 th week	Magnetic anisotropy – magnetocrystalline and	Lectures (C&T).

	2	shape anisotropy – Random	
,		anisotropy model –	
		Magnetostriction - Domain	•
		Theory –Coercivity	
		mechanism- Fine particle	
		magnetism –Magnetocaloric	
		effect	
4.	9 th - 12 th	Superconductivity basics –	Lectures (C&T).
	week	Physical properties below Tc-	
		Duration of persistent	
,		currents –Magnetic field	
		effects on superconductors-	
		High Tc Superconductors -	
		Cuprate superconductors –	
		Wires and Tapes – MgB ₂ -Iron	
		and Carbon based	
90	ļ	superconductors -	
		Superconducting magnets	
		ouperconducting magnets	
		Magnetic levitetien systems	
5.	12 th – 15 th week	Magnetic levitation systems - Stability and Levitation -	Lectures (C&T).
	l l l l l l l l l l l l l l l l l l l	Superconducting bearings –	
		Levitation forces – Static and	
		Dynamic –Superconducting	
		Maglev Vehicles – Equation	
		of motion – Aerodynamic	a
		effects – Guideway	
		11	
	İ		1

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Quiz- I	4 th Week	30 min	10 %
2.	Mid semester exam	9 th week	120 min	30 %
3.	Quiz – II/ Seminar/ Assignment	13 th week	30 min	10 %
4.	Semester exam	As per institute time table	180 min	50 %

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

1.B. D. Cullity and C.D. Graham, Introduction to Magnetic Materials, Wiley, NJ,

(2009). 2.C. Kittel, Introduction to Solid State Physics, 7th e dition, Wiley (2006).

3.F. C. Moon, Superconducting Levitation, Wiley (2004).

Reference Books
1. S. Chikazumi, Physics of Ferromagnetism, Oxford University Press (1997).

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Performance in the assessment methods.
- Questionnaire about the effectiveness of the delivery method, topics and the knowledge gained.

 > Oral feedback.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

> 75% attendance is mandatory.

- Those who indulge in malpractice such as copying, plagiarism in a particular assessment shall be awarded zero marks.
- Those who are absent during any of the assessment method on genuine grounds can undertake the assessment method once.
- Assignment/Seminar shall be conducted for students as per their choice. Weightage shall be 5% for such assessment and rest shall be Quiz (5%).

ADDITIONAL COURSE INFORMATION

The teacher can be contacted through phone or in person for clarifications by the student on a mutually convenient time.

FOR SENATE'S CONSIDERATION

Course Faculty Refronts Doughn cc-Chairperson N. Bashera
17/7/17
HOD M. Sopulaling Sha