Department of Physics

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE							
Course Title	Electronics						
Course Code	PH 657	No. of Credits	3				
Department	Physics	Faculty	Dr. Santhosh Kumar M.C.				
Pre-requisites Course Code	Nil						
Course Coordinator(s) (if, applicable)	Dr. A. Chandra Bose						
Other Course Teacher(s)/Tutor(s) E-mail	santhoshmc@nitt.edu	Telephone No.	04312503611				
Course Type	↓ Core course						
COURSE OVERVIEW This course deals with the fundamentals electronics. It covers topics like network theorems and applications, Bipolar Transistor Amplifiers and FETs, Oscillators, operational amplifiers and Digital Circuits Logic gates. This course will help the student to understand the working principle of many practical electronic equipment used in day today life. COURSE OBJECTIVE To impart a diversified knowledge on circuit analysis, the semiconductor devices, FETs, operational amplifiers and digital circuits and their applications							
COURSE OUTCOMES (CO) Course Outcomes Aligned Programme							
On successful completion of this course, students would be able to			o Outcomes (PO)				
Network theorems and applications			Student will be able to apply network theorems in circuits				
Bipolar Transistor Amplifiers and FETs			Understand the principle of FETs				
Oscillators			Will be able construct oscillator circuits				

Operational amplifiers			Understand the working of Op-amp				
Digital Circuits Logic gates			Understand the working of Logic gates				
S.No.	Week	Торіс	Mode of Delivery				
1	Aug 1 st week	Introduction to the course Network theorems, Special Diodes Kirchoff's laws for current and voltage	PPT/Chalk & Talk				
2	Aug 2 nd week	Thevenin's and Norton's theorems, superposition and reciprocity theorems with examples	C &T				
3	Aug 3 rd week	p-n junction diodes – Zener diode – tunnel diode – Schottky barrier diode – varactor diode-photodiode	PPT				
4	Aug 4 th week	solar cell – photodiodes and transistors – light emitting diode – semiconductor laser – UJT – opto-couplers	PPT				
5	Aug 5 th week	Bipolar Transistor Amplifiers and FETs Biasing characteristics of junction transistors – analysis using re model-fixed bias-voltage divider bias-emitter bias — frequency response	C &T/PPT				
6	Sep 1 st week	Direct coupled transistor amplifiers – single stage transistor amplifier	C &T				
7	Sep 2 nd week	Feed back in amplifiers – effect of negative feedback in amplifiers – FETs – different types-low and high frequency FETs, frequency response of FET – applications	C &T				
8	Sep 3 rd week	Oscillators Oscillator principle – oscillator types – frequency stability	C &T				
9	Sep 4 th week	RC oscillators – phase shift oscillator – Wein bridge oscillator – LC tunable oscillators – limitations	C &T				
10	Oct 1 st week	multivibrators – monostable and astable – 555 IC timer – sine wave and triangular wave generation – crystal oscillators and their applications.	C &T				
11	Oct 2 nd week	Operational Amplifiers Basis of operational amplifier – characteristics– feedback types.	C &T				

12	Oct 3 rd week	CMRR – inverting and sum and difference an and differentiating circ	C &T			
13	Oct 4 th week	Current to voltage (IC) current (VCIS) convers application – instrume pass and high pass ac	C &T			
14	Nov 1 st week	Digital Circuits Logic g binary adder, compara multiplexers.	C &T/PPT			
15	Nov 2 nd week	Flipflops: RS flip-flop, slave flip-flops, T flip-fl registers	C &T/PPT			
16	Nov 3 rd Week	synchronous and asynchronous counters – registers – A/D and D/A conversion.		C &T		
17	Dec 1 st week	Final Examination				
COURS	SE ASSESSME	NT METHODS				
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage		
1	Quiz -1	Sep 1 st week	30 minutes	5%		
2	Cycle Test - 1	Sep 3 rd Week	1 hour	20%		
3	Quiz -2	October 2 nd week	30 minutes	20%		
4	Cycle Test - 2	November 2 nd week	1 hour	5%		
5	Re-Test	November 3 rd week	1 hour	20%		
6	End Semeter Exam	Decemebr 1 st week	3 Hours	50%		
ESSEN	ITIAL READING	S : Textbooks, referen	nce books Website add	resses, journals, etc		
1. J. Milman and C.C. Halkias, Electronic Devices and Circuits, McGraw-Hill (1981).						

2. Albert Malvino, David J Bates, Electronics Principles, Tata McGraw-Hill (2007).

3. R.J. Higgins, Electronics with Digital and Analogue Integrated Circuits, Prentice Hall (1983).

4. R. L. Boylsted and L. Nashelsky, Electronic Device and Circuits, Pearson Education (2003).

5. C.L Wadhwa, Network Analysis and Synthesis, New Age International Publishers, (2007).

6. G.B. Calyton, Operation Amplifiers, ELBS (1980).

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Feedback from the students will be collected after 15th week :on knowledge gained, subjects relevant to the course, methodology adopted, aspect of improvement, whether the topics fulfill the course outcome and program outcome.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.) Attendance : 75% Mandatory

Minimum Mark for a Pass = 35% Marks or Class average/2 whichever in higher Re-assessment: Based on the production of valid proof of absence; One test covering 4 units and 1 hour

ADDITIONAL COURSE INFORMATION

The faculty member is available for consultation in the evenings. Queries may also be emailed to directly at santhoshmc@nitt.edu

FOR SENATE'S CONSIDERATION

mallim **Course Facult**

CC-Chairperson

HOD