NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

This course outline template acts as a guide for writing your course outline. As every course is different, please feel free to amend the template/ format to suit your requirements.

COURSE OUTLINE TE	MPLATE		
Course Title	MAGNETISM AND S	UPERCONDUCTIN	IG LEVITATION
Course Code	PH683	No. of Credits	3
Department	Physics	Faculty	Dr. R. Justin Joseyphus
Pre-requisites Course Code		-	
Course Coordinator(s) (if, applicable)		Dr. B. Karthil	(eyan
Other Course Teacher(s)/Tutor(s) E-mail	rjustinj@nitt.edu	Telephone No.	2503614
Course Type	Core course	√ Ele	ective course
		to mental the second	TO A MALE WAY
COURSE OVERVIEW			
students as an elective superconducting materi	subject. The course of als and and their appli	offers topics on ma ications in superc	agnetism, magnetic materials, onducting levitation.
COURSE OBJECTIVES	S		
Learn the fund	e magnetic behavior	ism, supercondu	ting materials. activity and materials used

COUR	SE OUTCOMES	(CO)		
Cours	e Outcomes		Aligned Programme Outcomes (PO)	
2. Un su 3. Cla su 4. Ap su 5. Ev	aterials used in solderstand the con- perconductivity assify the types of perconducting no ply basic concep perconductivity aluate suitable no perconducting lo	naterials ots of magnetism and in technology naterials and methods for	 Obtain indepth knowledge on important Physics concepts Carry out independent research work in interdisciplinary areas Interact with professionals in related areas Communicate ideas and learn new technologies 	
S.No.	Week	Topic	Mode of Delivery	
	Total of 13 weeks – 40 h	5 Units	Lecture and flipped classroom	
1.	First 2-3 weeks	Unit-I : Fundamentals of magnetism	Lectures and power point presentation.	
2.	Next 2-3 weeks	Unit II: Types of magnetism	Lectures, Class room discussions and derivation by individual students.	
3.	Three weeks	Unit-III: Magnetic phenomena	Lectures and power point presentation.	
4.	Three weeks	Unit-IV: Superconducting materials	Lectures and discussions	
5.	2-3 weeks	Unit-V: Superconducting levitation	Lectures, discussion on case studies	

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Quiz- I	On completion of Unit-I	30 min	10 %
2.	Group work	On completion of Unit-II	60-120 min	10 %
3.	Mid semester exam	On completion of Unit-III	60 min	20 %
4.	Quiz – II	On completion of Unit – IV	30 min	10 %
5.	Semester exam	As per regular timetable	180 min	50 %

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc

Text Books

- 1.B. D. Cullity and C.D. Graham, Introduction to Magnetic Materials, Wiley, NJ, (2009).
- 2.C. Kittel, Introduction to Solid State Physics, 7th e dition, Wiley (2006).
- 3.F. C. Moon, Superconducting Levitation, Wiley (2004).

Reference Books

1. S. Chikazumi, Physics of Ferromagnetism, Oxford University Press (1997).

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Performance in the assessment methods
- Questionnaire about the effectiveness of the delivery method, topics and the knowledge gained
- Evaluate the understanding of a research article on the particular topic by students.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- Attendance is not mandatory for the course. However long term absenteeism (50 % of each unit covered) should be avoided. Such students have to inform about the nature of the leave with proper documents. Those who are absent has to prepare a report of the topics covered by the teacher during their period of absence.
- Those who indulge in malpractice such as copying, plagiarism shall have to redo the course.

3/4

> Those who are absent during any of the assessment method on genuine grounds can undertake the assessment method once.

ADDITIONAL COURSE INFORMATION

The lecture materials such as notes, video lectures shall be displayed in NIT-T moodle. In case of difficulty, the web links shall be informed in the class. The topics for discussion shall be announced in the class and the student has to go through study materials/video lectures before coming to the class. The teacher can be contacted through phone or in person for clarifications by the student on a mutually convenient time.

FOR SENATE'S CONSIDERATION

Course Faculty (John Jory CC-Chairperson &

HOD No Yogala laishan