COURSE PLAN – PART I				
Course Title	Particulate Technology			
Course Code	MT621	No. of Credits	3	
Department	MME	Faculty	Dr. P. VIVEKANANDHAN	
Pre-requisites Course Code		Section (if, applicable)		
Course Coordinator(s) (if, applicable)		Department	MME	
Other Course Teacher(s)/Tutor(s) E-mail		Telephone No.	9865392902 Intercom : -	
Course Type	Core course	Elective course		
Syllabus (approved in RoS)				

Syllabus (approved in BoS)

Introduction to particulate processing – advantages, limitations and applications of particulate processing

Science of particulate processing – issues related to particle morphology – differences in mechanical behaviour (with respect to cast and wrought materials) and related mathematical treatment - similarities and differences between metal powder and ceramic powder processing

Production and characterisation of metal and ceramic powders – compaction processes – powder properties and powder compaction – Pressing, Hot Isostatic Processing and extrusion

Sintering – thermodynamic and process aspects – recent developments in mechanical alloying and reaction milling

 $Production \ of \ particulate \ composites \ -application \ of \ P/M \ based \ on \ case \ studies \ -manufacturing \ of \ typical \ products \ -near \ net \ shape \ processing$

COURSE OBJECTIVES

1. To introduce the importance non-conventional processing routes for different materials and its importance for advanced materials manufacturing.

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)
At the end of the course student will be able to:	
1. Understand the fundamental concepts of particulate processing methods, advantages and limitations.	1
	1, 2, 3
2. Able to understand the science of particulate processing, microstructural – property correlation over conventional methods	

3.	Know the various methods of powder production and compaction approaches.	5,7
4.	Understanding the thermodynamics involved during sintering process.	9
5.	Application of particulate technology in various applications.	10, 11

COURSE PLAN – PART II

COURSE OVERVIEW

Introduction to particulate processing – advantages, limitations and applications of particulate processing

Science of particulate processing – issues related to particle morphology – differences in mechanical behaviour (with respect to cast and wrought materials) and related mathematical treatment - similarities and differences between metal powder and ceramic powder processing

Production and characterisation of metal and ceramic powders – compaction processes – powder properties and powder compaction – Pressing, Hot Isostatic Processing and extrusion

 $Sintering-thermodynamic\ and\ process\ aspects-recent\ developments\ in\ mechanical\ alloying\ and\ reaction\ milling$

 $Production \ of \ particulate \ composites \ -application \ of \ P/M \ based \ on \ case \ studies \ -manufacturing \ of \ typical \ products -near \ net \ shape \ processing$

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	Topic	Mode of Delivery
1	2 nd – 3 rd Week Sep 2021	Introduction to particulate processing – advantages, limitations and applications of particulate processing	Power point, Online Mode and through Course material
2	4 th Week Sep – 1 st Week Oct 2021	Science of particulate processing, differences in mechanical behaviour and related mathematical treatment and similarities and differences between metal powder and ceramic powder processing	Power point, Online Mode and through Course material
3	2 nd Week Oct to 3 rd Week Nov 2021	Sintering – thermodynamic and process aspects – recent developments in mechanical alloying and reaction milling	Power point, Online Mode and through Course material
4	4 th Week Nov to 1 st Week Dec 2021	Production of particulate composites - application of P/M based on case studies - manufacturing of typical products – near net shape processing	Power point, Online Mode and through Course material

5	2 nd Week - 3 rd Week	Understanding the toxicity of	Power point, Online
	Dec 2021	nanoparticls and fibers, exposure	Mode through Course
		to quartz, asbestos, air pollution.	material
		Environmental issues and Societal	
		implications.	
		-	

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightag e
1	Mid-Sem Test	3 rd week Oct '21	1 hr 30 min	25
2	Assignment	2 nd week Nov'21	-	20
3	Seminar cum Viva / Report on case study	1st week Dec '21	-	25
CPA	Compensation Assessment	1st Week Dec '21	-	25
5	End semester exam	4 th Week of Dec'21	2hrs	30

COURSE EXIT SURVEY

Student's Feedback

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc): communication through class reps through mobile and E-mail.

ATTENDANCE: Minimum attendance 75%. If less than 75% attendance, He /She will be prevented from writing the end semester and re-do the course. Students secured F grade should re-appear the examination as per Institute norms

COMPENSATION ASSESSMENT: If any students miss the test in genuine ground (production of certificate or letter from the authorized personnel), She / he will be permitted for compensation assessment

ACADEMIC HONESTY & PLAGIARISM: If any students involve in malpractice in test or final examination, She /he will be prevented from writing the final assessment and awarded F grade and re-do the course (as per Instt. Regulations)

ADDITIONAL INFORMATION

Nil

FOR APPROVAL

Course Faculty

P. DE (VIVEKANANDHANP)

S Muth

B.Ravisankar

CC-Chairperson HOI