

DEPARTMENT OF CHEMISTRY

	COURSE PLA	N – PART I		
Name of the programme and specialization	B. Tech. (Metallurgica Sem	ll and Materials Eng	ineering (MME) -1 st	
Course Title	Chemistry (Theory)			
Course Code	CHIR11 No. of Credits 3			
Course Code of Pre- requisite subject(s)	Nil			
Session	July 2021	Section	Ν	
Name of Faculty	Dr. Arivazhagan Chinnappa	Department	Chemistry	
Official Email	azhagan@nitt.edu	Telephone No.	+91-8056672406	
Name of Course Coordinator(s) (if, applicable)	Dr. Arivazhagan Chin	nappa		
Official E-mail	azhagan@nitt.edu	Telephone No.	+91-8056672406	
Course Type (please tick appropriately)	✓ Core course	Elective course		

Syllabus (approved in BoS)

<u>Theory</u> (Units):

Unit 1: Electrochemistry and Corrosion

Cell EMF-its measurement and applications -concentration cell -electrode electrolyte concentration cell -concentration cell with and without transference -Dry corrosion and wet corrosion, mechanisms, types of corrosion, Differential Metal corrosion, Differential Aeration corrosion, intergranular, Passivity, Pitting, Polarization -Chemical conversion coatings and organic coatings-Paints, enamels.

Unit 2: Phase rule

Definition of terms –phase-components-degree of freedom-derivation of Gibbs phase rule –one component system –H₂O, CO₂, Sulfur –Two-component system –Eutectic systems –reduced phase rule -Pb-Ag system –Compound Formation with congruent melting –Zn-Mg Alloy system-Copper-nickel alloy system -systems with incongruent melting –Na₂SO₄-H₂O system and simple three-component systems.

Unit 3: Water

Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge-Caustic embrittlement -softening of water, zeolite process & demineralization by ion exchangers, boiler feed water, internal treatment methods-specifications for drinking water, BIS & WHO

standards, treatment of water for domestic use, desalination -Reverse osmosis & Electrodialysis. **Unit 4: Spectroscopy**

Interaction of electromagnetic radiation with matter, Electronic spectroscopy -Theory of electronic transitions, instrumentation, Beers-Lambert law, Woodward FIESER rule, applications. IR spectroscopy -Fundamentals, Instrumentation and applications, Raman spectroscopy – Fundamentals and applications.

Unit 5: Polymers and Composites

Concept of macromolecules-Tacticity-Classification of Polymers-Types of Polymerization-Mechanism--Ziegler Natta Polymerization -Effect of Polymer structure on properties -Important addition and condensation polymers –synthesis and properties –Molecular mass determination of polymers-Static and dynamic methods, Light scattering-Rubbers–Vulcanization–Synthetic rubbers –Conducting polymers-Composite materials

Reference and Text Books

1. P. C. Jain & M. Jain, *Engineering Chemistry*, Dhanpat Rai Publishing Company, New Delhi, 2005.

2. P. W. Atkins and J. de Paula, *Physical chemistry*, Oxford University Press, 2002.

3. B.R. Puri, L. R. Sharma, M.S. Pathania, *Principles of Physical Chemistry*, Vishal Publishing Company, 2008.

4. F.W. Billmayer, *Textbook of Polymer Science*, 3rd Edition, Wiley. N.Y. 1991.

5. S.S. Darer, S. S. Umare, A Text Book of Engineering Chemistry, S. Chand Publishing, 2011.

6. Donald L. Pavia Gary M. Lampman George S. Kriz James R. Vyvyan, *Introduction to spectroscopy*, , 3rd Edition, Brooks/Cole Cengage learning, 2011.

COURSE OBJECTIVES

To introduce the student's basic principles of Electrochemistry and Corrosion. They will be familiar with phase rule & its applications. Students will know about the essential requirements of water and its importance in day-to-day life. To provide students with a brief outline of the types and applications of polymers. Finally, students will be equipped with the usage of spectroscopy in industrial applications.

MAPPING OF COs with POs			
Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)		
Students will learn about the:			
 Students will learn about the Electrochemistry and phase rule They will be familiarized with the importance of polymer and its application in industries and its interpretation to understand the matter at atomic scale. 	1, 4		
• A brief introduction in the area of water, spectroscopy will be very useful for the students in future endeavor.			

COURSE PLAN – PART II

COURSE OVERVIEW

This is a 3 credit course offered to I year B.Tech students. Three theory classes will be conducted per week. This course provides a thorough understanding of the subject through lectures, tutorials and demonstrations.

COUR	COURSE TEACHING AND LEARNING ACTIVITIES (Add more rows)				
S.No.	Week/Contact Hours	Торіс	Mode of Delivery		
1	IV week of Dec 2021	Introduction to electrochemistry & Cell EMF- its measurement and applications -	Mode: Online MS Teams via PPT		
2	V week of December 2021	concentration cell, electrode electrolyte concentration cell - concentration cell with and without transference	Mode: Online MS Teams via PPT		
3	I week of January 2022	Dry corrosion and wet corrosion, mechanisms, types of corrosion, Differential metal corrosion, differential aeration corrosion	Mode: Online MS Teams via PPT		
4	II week of January 2022	Intergranular corrosion Passivity, Pitting, Polarization Chemical conversion coatings and organic coatings- Paints, enamels.	Mode: Online MS Teams via PPT		
5	III week of January 2022	Definition of terms – phase- components- degree of freedom- derivation of Gibbs phase rule One component system – H ₂ O, CO ₂ , Sulfur	Mode: Online MS Teams via PPT		
6	IVweek of January 2022	Two-component system – Eutectic systems-reduced phase rule - Pb-Ag system – Compound Formation with congruent melting Zn- Mg Alloy system	Mode: Online MS Teams via PPT		
7	V week of January 2022	Copper-nickel alloy system - systems with incongruent melting – Na ₂ SO ₄ - H ₂ O system and simple three- component systems.	Mode: Online MS Teams via PPT		
8	I week of February 2022	Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge- Caustic embrittlement,	Mode: Online MS Teams via PPT		
9	II week of February 2022	Softening of water, zeolite process & demineralization by ion exchangers, Boiler feed water, internal treatment methods	Mode: Online MS Teams via PPT		

10	III week of February 2022	Specifications for drinking water, BIS & WHO standards, Treatment of water for domestic use, desalination - Reverse osmosis & Electrodialysis.	Mode: Online MS Teams via PPT
11	IV week of February 2022	Interaction of electromagnetic radiation with matter, Electronic spectroscopy, Theory of electronic transitions, instrumentation, Beers Lambert law, Woodward Fieser rule, applications.	Mode: Online MS Teams via PPT
12	I week of March 2022	IR spectroscopy -Fundamentals, Instrumentation and applications, Raman spectroscopy –Fundamentals and applications.	Mode: Online MS Teams via PPT
13	II week of March 2022	Concept of macromolecules-Tacticity -Classification of Polymers-Types of Polymerization-MechanismZiegler Natta Polymerization Effect of Polymer structure on properties - Important addition and condensation polymers	Mode: Online MS Teams via PPT
14	III week of March 2022	Synthesis and properties Molecular mass determination of polymers- Static and dynamic methods, Light scattering- Rubbers – Vulcanization – Synthetic rubbers – Conducting polymers- Composite materials	Mode: Online MS Teams via PPT

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
Theory	,			
1	Quiz/seminar/G.D./ assignment	1 st week of January	1 week	10
2	Test-I	3 rd week of January	60 minutes	25
3	Quiz/seminar/G.D./ assignment	2 nd week of February	1 week	10
4	Test-2	3 rd week of February	60 minutes	25
СРА	Compensation Assessment*	2 nd week of March	60 minutes	25
5	Final Assessment *	4 th week of March	3 hours	30

Total (100 Marks)

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback from students during class committee meetings
- 2. Anonymous feedback through questionnaire at the end of the semester.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

E-mail: azhagan@nitt.edu / Phone: +91-8056672406

COMPENSATION ASSESSMENT POLICY

For those students who missed Test I and Test II due to genuine reasons, Compensation assessment will be conducted in III week of March 2022.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

The respective faculty will be available for consultation at times as per the intimation by the faculty.

FOR APPROVAL

C. Aniverlagen NRemethbabe Course Faculty _____ CC- Chairperson _____ HOD _____ HOD _____.

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2019	2018	2017	2016	
35% or (Class average/2) whichever is greater.		(Peak/3) Average/2) lower	or (Class whichever is	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.