NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Department of Metallurgical and Materials Engineering

Course Code Title & Course Title	MTLR15 HEAT TREATMENT LABORATORY			
Programme & Semester	B.Tech & V	No. of Credits	01	
Department	MME	Faculty	Dr. P.Venkatachalam	
Pre - requisites Course Code	MTPC18			
Course Coordinator(s) (if, applicable)	Amplian police		Especial I	
Other Course Teacher(s)/Tutor(s) E-mail	venkatp@nitt.edu	Telephone N	o. 8220931481	
Course Type	ELR			

COURSE OVERVIEW

Practical experience on Heat treatment of plain carbon and alloy steels: Annealing, normalising, hardening and tempering. Determination of grain size in microstructure. Heat treatment procedures for non-ferrous alloys. Tutorials for introducing important aspects of heat treatment.

COURSE OBJECTIVES

To develop the knowledge of heat treatment and associated procedure of various engineering materials and apply them to study how it influences the microstructure and results in different mechanical behavior.

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)	
Define various heat treatment procedures for variety of engineering materials and their importance in materials behavior	[1, 2]	

- 2. Classify different heat treated microstructure using microscope
- Provide the practical solution procedure for the betterment of the materials performance based heat treatment

[1, 2, 10]

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.		Week Topic		Mode of Delivery	
	1.	1 st week	Introduction to Heat treatment laboratory. Responsibilities and safety precautions	(a) sedan-il	
	2.	2 nd week	Metallography – sample preparation practice	(classical biomess)	
	3.	3 rd week	Heat treatment of mild, medium carbon and alloy steels and Procedure for grain size measurements.	Sept w	
	4.	4 th week	Microstructural evaluation of Normalized steel	-	
	5.	5 th week	Microstructural evaluation of Annealed steel		
	6.	6 th week	Microstructural evaluation of Oil quenched steel	Chalk and talk Practical	
	7.	7 th week	Microstructural evaluation of Water quenched steel		
	8.	8 th week	Microstructural evaluation of Duplex stainless steel	made steps been and colorated techn	
	9.	9th week	Microstructural evaluation of Copper		
	10.	10 th week	Microstructural evaluation of Aluminium		

COURSE ASSESSMENT METHODS						
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage		
1,	Assessment I (Record, observation, assignment and lab experiment)	1st to 10th week	30 hrs	75%		
2.	Assessment II (End practical examinations and viva)	11 th week	3hrs	25%		

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

Text Books:

- T.V. Rajan, C.P. Sharma and A. Sharma, Heat Treatment Principles and Techniques, Prentice Hall of India, New Delhi, 1998.
- 2. ASM Handbook, Vol.4, Heat Treating, ASM Int., Ohio, 1991

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- An exist survey will be taken from the student at the end of the semester through a
 questionnaire on coverage of lab syllabus, usefulness of course plan, lab manual, practical
 teaching efficiency, etc
- 2. The feed back collected from the students is to be used for improvement of the lab in the future semesters

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

1.Examination

- 1. Attending all the assessments is compulsory for every student.
- 2. If any student is not able to attend any of the Lab session due to genuine reason, student is permitted to attend the compensation lab at the end of the 10^{th} week.

- Students should submit one assignment on selective topics related to this lab at the end of the 10th week.
- 4, The relative grading guidelines will followed and passing mark will be assigned as per Institute norms.

2. Attendance

Students should have minimum 75% attendance for completing the lab course

ADDITIONAL COURSE INFORMATION

 Students can make a call or email to <u>venkatp@nitt.edu</u> at any stage of the course duration in case he/she finds difficulty in understanding the practical concepts.

FOR SENATE'S CONSIDERATION

Course Faculty

Dr. P. Venkatachalam

CC-Chairperson Dr. S. Jerome

HOD/MME

Dr. S. P. Kumaresh Babu

Dr. S.P. KUMARESH BABU

HEAD
DEPT. OF METALLURGICAL & MATERIALS ENGG.
NATIONAL INSTITUTE OF TECHNOLOGY
TIRUCHIRAPPALLI - 620 015.