NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE						
Course Title	Ferrous Metallography					
Course Code	MTI D11	No. of	2			
		Credits				
Department	MME	Faculty	Dr.S.Manivannan			
Pre-requisites	MTPC18					
Course Code						
Course Coordinator(s)	Not applicable					
(if applicable)						
Tutor(s) E-mail	manivannan@nitt.edu	Contact No.	9363301801			
Course Type	Lab course					

COURSE OVERVIEW

This course deals with the effect of sub atomic factors that influence electrical, magnetic and optical properties of different engineering materials. Theories explaining their behaviour will be discussed.

COURSE OBJECTIVES

- To learn and to gain experience in the preparation of metallographic specimens.
- To examine and analyse the microstructures of carbons steels, alloy steels, cast irons and other ferrous materials.
- To understand the basic principles of optical microscopy
 - To measure the grain size of materials

COURSE OUTCOMES (CO)

	Aligned
Course Outcomes	Programme
	Outcomes (PO)
At the end of the course student will be able	
After the completion of this laboratory course, the student is able to	
prepare the specimens for metallographic examination with best	
practice, can operate the optical microscope and understand,	[1, 2, 5, 11]
interpret, analyze the microstructures of all ferrous materials.	[-, -, -,]
semiconductors and their processing methods used in the	
semiconducting materials industry.	

COURSE TEACHING AND LEARNING ACTIVITIES						
Sl.No	Week	Торіс	Mode of Delivery			
1	1 st & 2 nd Week	Specimen preparation for metallographic observation - working of metallurgical microscope	Chalk and Talk and Experiment			
2	3 rd & 4 th Week	Grain size measurements	Chalk and Talk and Experiment			
3	5 th Week	Sulphur printing and phosphor printing	Chalk and Talk and Experiment			
4	6 th & 7 th Week	Microstructure cast iron - gray, nodular and malleable iron - unetched	Chalk and Talk and Experiment			
5	8 th & 9 th Week	Microstructure of gray, nodular and white iron – etched	Chalk and Talk and Experiment			
6	10 th week	Microstructure of iron, steel (low carbon, medium carbon, high carbon, hypo and hypereutectoid steels)	Chalk and Talk and Experiment			
7	11 th & 12 th Week	Microstructure of stainless steels and high speed steels	Chalk and Talk and Experiment			
8	13 th Week	Over heated structure and banded structure in steels	Chalk and Talk and Experiment			
9	14 th Week	Revision lab class	Experiment			

COURSE ASSESSMENT METHODS						
Sl.No	Mode of	Week/Date	Duration	% Weightage		
	Assessment					
1	Assessment 1	1 to 13 th Week	2 hours	50 %		
	(Record,					
	Observation and					
	lab Experiment)					
2	Assessment 2	14 th Week	1 hour	25%		
	(Written test)					
3	Final	14 th Week	3 hours	25 %		
	Assessment					
	(Final					
	Experiment					
	Written test and					
	Viva)					

ESSENTIAL READINGS : Textbooks, reference books etc.,

1. Donald C. Zipperian, Ph.D. Pace Technologies "Metallographic Specimen Preparation Basics"

- 2. Jain P. L., " Principles of Foundry Technology", 3rd Edition, Tata McGraw Hill, 1995
- 3. ASM Handbook Volume 9: Metallography and Microstructures

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

The exit survey will be assessed based on the questionnaire prepared by the Institute/class

teacher and the expected attainment to be greater 75%. The feedback collected from students by

the Institute is to be informed to the teacher to improve the course in future semesters.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. The students are expected to attend all the classes except for medical reasons. Minimum attendance of 75% (including the concession for on-duty and medical reasons) is required for writing the semester examination.
- 2. The relative grading policy will be followed and the passing minimum marks will be fixed based on Institute guidelines.

ADDITIONAL COURSE INFORMATION

FOR SENATE'S CONSIDERATION

Course faulty (Dr.S.Manivannan)

CC-Chairperson (Dr.S.Jerome) HOD (Dr.S.P.Kumaresh Babu)