NATIONAL INSTITUTE OF TECHNOLOGY: TIRUCHIRAPPALLI- 620 015

This course outline template acts as a guide for writing your course outline. As every course is different, please feel free to amend the template/ format to suit your requirements.

COURSE OUTLINE T	EMPLATE					
Course Title	Numerical Techniques					
Course Code	MAIR41	No. of Credits	3			
Department	Mathematics	Section	MME			
Pre-requisites Course Code	MAIR11, MAIR21, MAIR31, MAIR32					
Faculty	Prof. R. Nallaswamy	Course Coordinator(s) (if, applicable)	NIL			
Other Course Teacher(s) / Tutor(s) E- mail	nalla@nitt.edu	Telephone No.	0431-2503665			
Course Type	Core course minicopolisi					

COURSE OVERVIEW

- To understand the fundamental concepts of numerical technique.
- To impart the basic concepts of numerical techniques and system of equation, differential and integral, which arise in the Engineering applications.

COURSE OBJECTIVES

To introduce

- Numerical Methods for Solving Linear Systems
- Methods to solve equations of One Variable as well as system of equations with two variables.
- Interpolating Polynomials and best curve fitting methods for the given data.
- Numerical Differentiation and Integration
- Numerical Solutions of Ordinary Differential Equations
- Numerical Methods to solve partial differential equations.

COURSE OUTCOMES (CO)

Course Outcomes	Outcomes(PO)
 Understanding the basics concept of matrix and linear system of equations. To Compute numerical solution of f(x) = 0 and nonlinear equations with two variables. Understanding the basic concepts of numerical techniques in differentiation and integration. To compute differentiation and integration of f(x) by numerical techniques. To solve initial and boundary value problem (heat and wave equations) by numerical technique. 	The engineering undergraduates will apply their knowledge of numerical techniques to solve industrially applicable problems.

S. No.	Week	ING AND LEAR	Topic			Mode of Delivery
1.	Week 1	Solution of linear system - Gaussian elimination and Gauss-Jordan methods.				a serio ene. I the all expert
	Week 2	LU - decompos Jacobi and G sufficient conditi		Chalk and Talk		
	Week 3	Power method to eigenvector	Couran Code			
2.	Week4	Bisection method method.	Latinipa of			
	Week 5	Newton- Raphson $= 0$, $g(x,y) = 0$ -	Chalk and Talk			
	Week 6	Week 6 Horner's method - Graeffe's method- Bairstow's method				
	Week 7	Newton's forwarinterpolation.	ogy i camita			
	Week 8	Lagrange's inter and Integration and 3/8 rules.				
3.	Week9	Method of least method - Euler's	Euler's	e millio		
	Week 10	Taylor's metho simultaneous equ	Chalk and Talk			
	Week11	Multistep metho Laplace equati Liebmann's met	in districts in gradual (#) is entable (#)			
	Week 12	Heat flow equal relation.	ir strain.			
COLID	Week 13	Crank - Nicol dimensional way	re equation.	- Solution o	f one	michel example
S. No.	SE ASSESS	MENT METHO Plan	Week/Date	Duration	1	% Weightage
1.	Cycle Test	-77.5763027M	7 th week	1 Hour	20%	70 Weightage
2.	Cycle Test-II		12 th week	1 Hour	20%	
3.	Retest		14 th week	1 Hour	bler be	musikanet i i Kalimarita
4.	Assignments (two assigment each assigment five mark weightage)		(a) to note as	n varbound	10%	
5.	End Seme	ster Exam		3 Hours	50%	Total: 100 Marks

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc Reference Books:

- 1. David Kincaid and Ward Cheney, Numerical Analysis\, 3rd edition, American Mathematics Society, (Indian edition) 2010.
- 2. Gerald C.F., and Wheatley P.O., Applied Numerical Analysis, Addison-Wesley Publishing Company, 1994.
- 3. Jain, M.K., Iyengar, S.R. and Jain, R.K., Numerical Methods for Scientific and Engineering Computation, New Age international, 2003.
- 4. Atkinson, K.E., An Introduction to numerical Analysis, John Wiley & Sons, 2008.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1. Feedback from students during class committee meeting.
- 2. Anonymous feedback through questionnaire (as followed previously).

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. Test-I and Test-II will be conducted in regular class.
- 2. 75% attendance is compulsory for writing the end semester examination.

ADDITIONAL COURSE INFORMATION

Faculty is available for discussion after the class hours at the Department on the first floor of Lyceum. Room No. 203.

FOR SENATE'S CONSIDERATION

Course Faculty

CC-Chairperson

)

Dr. K. MURUGESAN
Professor and Head
Bepartment of Mathematics
Metional Institute of Technology
Turuchirappalli - 620 015.