DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Course Title	Physical Metallurgy				
Course Title	1 Hybrodi 1 House By	The second second			
Course Code	MT 611	No. of Credits	3		
Department	MME	Faculty	Dr S KUMARAN		
Pre-requisites Course Code	Not applicable				
Course Coordinator(s) (if, applicable)	Dr S KUMARAN				
Other Course Teacher(s)/Tutor(s) E-mail	-	Telephone No.	9944434705 Intercom: 3482		
Course Type	Core course	√ Elective of	course		
heterogeneous nuclea	ations and growth of	solids, dendritic	ealing homogeneous an		
constitutional super co	ooling and dendritic gro	wth in alloys.			
Phase diagrams – solid	I solution -types. Hume-	Rothery rule Phase	diamena Dinami tun		
Effect of alloying elen of isotherms and isopl	cation of different types nent on Iron-carbon diag	of solid solutions	 Iron-Carbon diagram 		
Effect of alloying elen of isotherms and isopl Het treatment of ferrou – hardenability measu	cation of different types nent on Iron-carbon diag	of solid solutions ram. Ternary phase rmalising, TTT and ermo mechanical tr	- Iron-Carbon diagrams diagrams Understanding CCT diagrams, Hardening eatments. Heat treatments		

COURSE OBJECTIVES

To develop an understanding of the basis of physical metallurgy and correlate structure of materials with their properties for engineering applications.

COURSE OUTCOMES (CO) Aligned Programme				
Course Outcomes	Outcomes (PO)			
Upon completion of this class, the students will be able to:				
1. Describe the basic crystal structures (BCC, FCC, and HCP), recognize other crystal structures, and their relationship with the properties	1,2			
2. Define and differentiate engineering materials on the basis of structure and properties for engineering applications	1,2			
3. Select proper processing technologies for synthesizing and fabricating different materials	3,4,5			
4. Analyse the microstructure of metallic materials using phase diagrams and modify the microstructure and properties using different heat treatments.	2,3,5			

COURSE TEACHING AND LEARNING ACTIVITIES

Mode of Delivery
Chalk and Board
Chalk and Board, Power Point Chalk and Board, Power
Point Chalk and Board, Power
Point Point

S.No.	Mode of Assessment	Week/Date	Duration (min.)	% Weightage
1	Assignment	September,	60	10
2	Tutorial	November August	120	10
3	Assessment (Written Test)	October	60	20
4	Seminar	October	15min/student	10
5	Final assessment	November	180	50

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals,

- 1. Avner, S. H., "Introduction to Physical Metallurgy", second edition, McGraw Hill, 1985.
- 2. William F. Hosford, Physical Metallurgy, Taylor & Francis Group, 2008
- 3. Raghavan, V., "Physical Metallurgy", Prentice Hall of India, 1985
- 4. Donald R Askland and Pradeep P Phule "Essentials of Materials Science and Engineering, Baba Barkha NathPrinters, Delhi.
- 5. Willam D. Callister, Jr. Materials Science and Engineering, Wiley India Pvt. Ltd.
- 6. Vijendra Singh, Physical Metallurgy, Standard Publishers.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Student's feedback

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Min. attendance is 60%. Students with less than 60% attendance will be prevented for writing final assessment. She /He can undergo formative assessment as per Instt. Norms. Grading is as per Institute norms.

ADDITIONAL COURSE INFORMATION

You are welcomed for technical discussion out of the class room. Please contact me through my email id or mobile

FOR SENATE'S CONSIDE	RATION	9	A	
	(m)	(h-	h hi	HOD I'V
Course Faculty	CC-Chairpe	rson	V	HOD _