

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLAN – PART I					
Name of the programme and specialization	B.Tech – Mechanical Engineering					
Course Title	Continuum Mechanics					
Course Code	MEPE30	No. of Credits	3			
Course Code of Pre- requisite subject(s)	MEPC10 – Engineering Mechanics, Strength of Materials, Fluid Mechanics					
Session	January 2021	Section (if, applicable)	A & B			
Name of Faculty	DrIng. Ashok Kumar Nallathambi	Department	Mechanical Engg.			
Email	nashok@nitt.edu	Telephone No.	63835 01906			
Name of Course Coordinator	Dr. M. Shahul Hameed					
E-mail	hameed@nitt.edu	Telephone No.				
Course Type	Program Elective					

Syllabus (approved in BoS)

Tensor algebra: Scalar, Vector, second and higher order Tensors, Eigen values & vectors, Transformation of Tensors, Tensor valued functions, gradient operators and Integral theorems.

Kinematics: References and deformations configurations, Mapping and deformation gradients, material and spatial representations, Nanson's formula, Strain measures, Rotation & stretch tensors, rate of deformation.

Kinetics: Concept of stress, Cauchy's stress theorem, first and second Piola- Kirchoff's & Cauchy's stress tensors, Normal and shear stress, Extremal stress values, stress states.

Balance Principles: Mass conservation, Reynold's transport theorem, Momentum and energy balances in references and current configuration, Weak and strong forms of balance equation, Continuum thermodynamics, Clausius-Duhem inequality, Frame dependent and independent quantities, Objective rates.

Constitutive Modeling: Fluid and solid constitutive equations, generalized Hooke's law, material symmetry, visco elasticity, metal plasticity: Yield criteria, Flow rule, Hardening rule, loading & unloading conditions, multiplicative strain decomposition, rheological models.

COURSE OBJECTIVES

1. To introduce basic tonsorial calculus for understanding continuum behavior of matters.

2. To familiarize the kinematics of continuum body deformation

3. To familiarize the configuration dependent stress and strain measures.

4. To strengthen the knowledge about the fundamental balance principles of continuum objects.

5.To establish a good foundation in constitutive modeling of solids.

COURSE OUTCOMES (CO)				
Course Outcomes	Aligned Programme Outcomes (PO)			
At the end of this course, the student will				
Understand the tensorial representation of physical quantifies	1,2,5,8,10-12			
Understand the unified theory of continuum body such as fluids and solids.	1,2,5,8,10-12			
Knowledge of stress and strain at a particular configuration on a material and spatial point	1,2,5,6,10-12			
Understand the balance of mass, momentum, and energy balance using the tensorial representation	1,2,4, 5,10-12			
Ability to perceive the constitutive modeling of materials	1,2,3, 5,7,9-12			

COURSE PLAN – PART II

COURSE OVERVIEW

This course introduces the tensor algebra required for understanding the balance principles. The unified continuum concept will bring the common platform for the solid and fluids. The configurational dependent and independent physical parameters will be elucidated. Balance principles and material constitutive model will be discussed in detail. Classical plasticity will also be discussed.

COURSE TEACHING AND LEARNING ACTIVITIES						
S.No.	Week/Conta ct Hours	Торіс	Mode of Delivery			
1	1 st Week	Introduction of Tensors – first and second order tensors, scalar, vector, dyadic operations	MS Team with whiteboard			
2	2 nd Week	Indicial notations, tensor algebra, Cartesian tensor, Coordinate transformations, fundamental metric tensor	MS Team with whiteboard			
3	3 rd Week	Covariant and contravariant components, Vector and Tensor transformation, higher order tensors	MS Team with whiteboard			

4	4 th Week Eigen values & vectors, Tensor valued functions, gradient operators and Integral					Team board	with
-	- WCCK	theorems			Winton.	Jourd	
5	5 th Week	Kinematics-1: References and deformations configurations, Mapping functions and deformation gradients, material and spatial representations				Team ooard	with
6	6 th Week	Kinematics-2: Material time derivate of spatial variables, different Strain measures				Team board	with
7	7 th Week	Kinematics-3: Nanson's formula, Rotation & stretch tensors, rate of deformation, Lie time derivatives				Team board	with
8	8 th Week	Kinetics-1: Concept of stress, Cauchy's stress theorem, first and second Piola-Kirchoff's & Cauchy's stress tensors			1 1 1 1	Team board	with
9	9 th Week	Kinetics-2: Extremal stress values, stress states, alternative stress measures				Team board	with
10	10 th Week	Mass conservation, Reynold's transport theorem, Momentum and energy balances in references and current configuration,				Team board	with
11	11 th Week	Weak and strong forms of balance equation, Continuum thermodynamics, Clausius-Duhem inequality				Team board	with
12	12 th Week	Frame dependent and independent quantities, Objective rates			MS whiteb	Team board	with
13	13 th Week	genera	Fluid and solid constitutive equations, generalized Hooke's law, material symmetry, visco elasticity			Team board	with
14	14 th Week	Metal plasticity: Yield criteria, Flow rule, Hardening rule, loading & unloading conditions				Team board	with
COURS	COURSE ASSESSMENT METHODS (shall range from 4 to 6)						
S.No.	Mode o Assessm		Week/Date	Duration		% Weig	ghtage
1	Cycle Test 1		5 th week	1 hr 30 min	n 25		5
	Cycle Test 2 10 th week 1 hr 30 min			25			

3	Assignments	Every 4 weeks	4	20
СРА	Compensation Assessment*	14 th week	1 hr 30 min (syllabus – upto last week class teaching)	25
4	Final Assessment *	15 th week	2 hours	30

*mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback from the students during class committee meeting.
- 2. At the end of every cycle test, feedback will be obtained for the lecture improvement
- 3. End semester feedback on Course Outcomes.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

- Per Email (<u>nashok@nitt.edu</u>)
- Student hours: Monday to Saturday 15:000 18:00 (during this time period, students can discuss about their doubts)
- WhatsApp 6383501906 or Mobile 95003 10739

COMPENSATION ASSESSMENT POLICY

Whomever missed the cycle test 1 or 2, can compensate with extra exam. Syllabus for the test should be the topics covered up to last week before the test.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.

The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

Recommended **Books** for reading

1. Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Gerhard A. Holzapfel, Wiley Publications, ISBN: 978-0-471-82319-3, 2000.

2. Schaum's Outline of Continuum Mechanics, George E. Mase, McGraw Hill; First edition, ISBN: 978-9389691283

3. Computational Continuum Mechanics, Ahmed A. Shabana, Wiley; 3rd edition, ISBN: 978-1119293217, 2005.

4. An Introduction to Continuum Mechanics, J.N. Reddy, Cambridge University Press; 2nd edition, ISBN: 978-1316614204

5. Introduction to Continuum Mechanics, by W Michael Lai, David H. Rubin, Erhard Krempl, David Rubin, Butterworth-Heinemann; 4th edition, ISBN: 978-9380501581

6. Fundamentals of Continuum Mechanics, John W Rudnicki, Wiley, ISBN: 978-1-118-92767-0

7. Continuum Mechanics, A.J.M.Spencer, Dover Publications Inc. ISBN: 978-0486435947

8. Elasticity and plasticity of large deformations. Bertram, A., Springer-Verlag Berlin Heidelberg, 3rd Edition, 2012, ISBN: 978-3642246142.

9. Computational inelasticity. Vol. 7., Simo, Juan C., and Thomas JR Hughes, Springer Science & Business Media, 2013, ISBN: 978-1475771695.

10. Mysore N. L. Narasimhan, Principles of Continuum Mechanics, Wiley-Interscience, ISBN: 978-0471540007, 1992.

11. Fridtjov Irgens, Continuum mechanics, Springer, ISBN: 978-3-540-74297-5, 2008.

12. **C.S. Jog,** Continuum Mechanics: Volume 1: Foundations and Applications of Mechanics, Cambridge University Press, 978-1107091351, 2015

Course materials can be obtained from google classroom: swtzf5f https://classroom.google.com/c/MjU3MDY3NjU4OTA3?cjc=swtzf5f

FOR APPROVAL

04 02 2

Dr. Ashok Kumar Nallathambi Course Faculty

Dr. M. Shahul Hameed CC-Chairperson

HOD

Page 5 of 6

Guidelines:

- a) The number of assessments for a course shall range from 4 to 6.
- b) Every course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.

B.Tech. Admitted in				P.G.
2018	2017	2016 2015		
35% or class whichever is g	- ·	Peak/3 or cl whichever is lov	0	40%

d) The passing minimum shall be as per the regulations.

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.