

COURSE PLAN – PART I						
Name of the programme and specialization	B.Tech., / Mechanical Engineering					
Course Title	BIOFUELS					
Course Code	MEPE14	No. of Credits	3			
Course Code of Pre- requisite subject(s)	MEPC16					
Session	JAN. 2021	Section (if, applicable)				
Name of Faculty	S. Vijayan Postdoctoral Fellow	Department	Mechanical			
Name of Course Coordinator(s) (if, applicable)	-					
E-mail	vijiyan@nitt.edu	Telephone No.	9865266082			
Course Type	Core course	Elective c	ourse			
Syllabus						

Importance of bioenergy and biofuels in solving energy crisis and global warming. Introduction to various biomass types – constituents, characterization. Biogas & bio-electricity, Bio-heat; Clean sustainable bioenergy, bio-electricity and biogas production from Dairy manure and Food Waste streams.

Biomass pre-treatment: Acid/alkali treatment, steam explosion, ammonia fibre expansion, enzymatic, ball milling, other non-conventional techniques, choice of pre-treatment based on biomass types. Pellets made from wood or grass biomass are commercially available at stores for heating homes, schools, businesses.

Seed-based biodiesel, bioethanol, conversion of waste oil to biodiesel, advanced biofuels including algae-biofuel, microbial biofuel, Conversion of waste vegetable oil into biodiesel, and advanced innovations in enzymatic conversion of non-food feed-stocks. Fuel properties, engine applications.

Biomass conversion technologies for biofuel. Thermochemical processes: Combustion, gasification, pyrolysis, hydrothermal liquefaction, hydropyrolysis, torrefaction, choice of thermal process based on biomass type and product requirement.

Biofuels/energy related environmental, economics, & social issues. The source, processing, and social impacts of biofuel utilization

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OBJECTIVES				
1. To characterize different biomass feedstock's based on its con- understand the analytical techniques to characterize biomass.	stituents and properties &			
2. To Understand and evaluate various biomass pre-treatment and processing techniques in terms of their applicability for different biomass types.				
3. To provide students with the basic principles of biofuels and bioenergy systems design.				
4. To identify biofuels and bioenergy sources; describe technologies,	biofuels and bioenergy			
5. To distinguish applications and efficiency; analyze manufacturing, distribution and integration issues.	biofuels and bioenergy			
COURSE OUTCOMES (CO)				
Course Outcomes	Aligned Programme			
	Outcomes (PO)			
On completion of this course, the students will be able to				
1. Describe the nature and principle of different biomass energy extraction systems and know how to choose the suitable biomass fuels for different bio-energy applications	1,3,5,6,7,8,12			
2. Address the desirable features of these biomass energy sources and their advantages over traditional fuels such as coal and oil	1,2,3,4,5,6,7,12			
3. Identify their limited scope in terms of suitable sites, dependence on the elements, capital costs, and cost effectiveness compared with traditional sources	1,2,5,6,7,8,11			

COURSE PLAN – PART II

COURSE TEACHING AND LEARNING ACTIVITIES					
S.No.	Week	Торіс	Mode of Delivery		
1	1 st Week	Importance of bioenergy and biofuels in solving energy crisis and global warming. Introduction to various biomass types – constituents, characterization			
2	2 nd Week	Biogas & bio-electricity, Bio-heat; Clean sustainable bioenergy, bio-electricity	Online mode		
3	3 rd Week	Biogas production from Dairy manure and Food Waste streams.	PPT/virtual white board		
4	4 th Week	Biomass pre-treatment: Acid/alkali treatment, steam explosion, ammonia fibre expansion, enzymatic, ball milling			
5	5 th Week	Non-conventional techniques, choice of pre- treatment based on biomass types			

6	6 th Week	Pellets made from we commercially available schools, businesses.	ood or grass b at stores for hea	ting homes,			
7	7 th Week	Seed-based biodiesel, waste oil to biodiesel	bioethanol, cor	version of			
8	8 th Week	Advanced biofuels microbial biofuel, Conve into biodiesel	including al ersion of waste v	gae-biofuel, regetable oil			
9	9 th Week	Advanced innovations in enzymatic conversion of non-food feed-stocks. Fuel properties, engine applications.			Online mode		
10	10 th Week	Biomass conversion technologies for biofuel. Thermochemical processes: Combustion, gasification, pyrolysis,			PPT/virtual white board		
11	11 th Week	Thermochemical processes: Hydrothermal liquefaction, hydropyrolysis, torrefaction					
12	12 th Week	Choice of thermal process based on biomass type and product requirement.					
13	13 th Week	Biofuels/energy related environmental, economics, & social issues.					
14	14 th Week	The source, processing, and social impacts of biofuel utilization					
COUR	SE ASSESSI	MENT METHODS					
S.No.	Mo	de of Assessment	Week/Date	Duration	% Weightage		
1	Cycle Test - I		6 th Week	1 hour*	20		
2	Cycle Test - II		10 th Week	1 hour*	20		
3	Assignments		-	1 week	15		
4	Online MCQ		12 th Week	I hour	15		
CPA	Compensation Assessment		11 th Week	1 hour*	20		
5	Final Assessment		14 th Week	3 hours	30		
(* ESSEN	* Assessment NTIAL REAI	time duration will be mo DINGS: Textbooks & Ref	re than 1 hour f	for mode of t	est 1, 2 and 3)		

- 2. Anju Dahiya, Bioenergy: Biomass to Biofuels, Eslevier, 2015
- Sunggyu Lee and Y.T. Shah, Biofuels and Bio-energy Processes and Technology, CRC Press, Taylor and Francis Group, 2013.

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

- 4. Pandey, A., Larroche, C., Ricke, S.C., Dussap, C.-G., Gnansounou, E., Biofuels: Alternative feedstocks and conversion processes, Academic Press, U.S.A., 2011.
- 5. Brown, R.C. (Ed.) Thermochemical processing of biomass into fuels, chemicals and power, Wiley, 2011.
- Clark, J., Deswarte, F. (Ed.) Introduction to chemicals from biomass, John Wiley and Sons, U.K., 2008.
- 7. Understanding clean energy and fuels from biomass, H. S. Mukunda, 2011

COURSE EXIT

- Feedback from the students during class committee meetings.
- Anonymous feedback through questionnaire and unknown formats.

COURSE POLICY (preferred mode of correspondence with students, policy on attendance,

compensation assessment, academic honesty and plagiarism)

MODE OF CORRESPONDENCE (email/ phone)

All the students are advised to attend the classes regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/any other information regarding this course) will be intimated in the Class only.

ASSESSMENTS:

- > Attending all the assessments are MANDATORY for every student.
- If any student is not able to attend any of the continuous assessments (CAs: 1 and 2 only) due to genuine reason, student is permitted to attend the compensation assessment (CPA) with % weightage equal to maximum of the CAs.
- > At any case, CPA will not be considered as an improvement test.
- The minimum marks for passing this course and grading pattern will adhere to the regulations of the Institute.

ATTENDANCE

- > At least 75 % attendance in each course is mandatory.
- ➤ A maximum of 10 % shall be allowed under On Duty (OD) category.
- Students with less than 65 % of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC HONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both

