NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

This course outline template acts as a guide for writing your course outline. As every course is different, please feel free to amend the template/ format to suit your requirements.

COURSE OUTLINE TEMPLATE			
Course Title	FUELS, COMBUSTION AND EMISSION CONTROL		
Course Code	ME 601	No. of Credits	3
Department	MECHANICAL	Faculty	Dr.M.UDAYAKUMAR
Pre-requisites	ME 203		
Course Code			
Course	NIL		
Coordinator(s)			
(if, applicable)			
Other Course	NIL	Telephone	9487257871
Teacher(s)/Tutor(s)		No.	
E-mail			
Course Type	Core course		
COURSE OVERVIEW			

- Review of the Fuels, combustion chemistry, thermodynamics, fluid mechanics to enable the student apply them for the study of combustion
- Apply the above sciences along with additional inputs of mass transfer and kinetics to formulate mathematical models to study combustion
- Formulate and obtain solutions for simplified models for laminar flame propagation, diffusion flames, turbulent flames and for droplet evaporation and coal particle combustion
- Study different types of comustors(liquid ,gas and solid firing), atomisers, stokers, cyclone combustor and P-F burners, FBC and CFBC systems.
- Study emissions with emphasis on emission index , formation of CO, NOx and unburnt HC. Control of emissions by SCR, SNCR.

COURSE OBJECTIVES

-Integrate the knowledge of combustion chemistry, thermodynamics, fulid mechanics, mass trnsfer and kinetics to formulate mathematical models for combustion systems and analyse them

- Impart knowledge of various types of burners and combustors operated with -
- solid, liquid and gaesous fuels Provides ability to convert emission measurements to different forms and get insight in to the formation of combustion related pollutants and their control techniques.

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)
On completion of the course, the students will be able to:	PO-1, PO-2, PO-3, PO- 4, PO-5, PO-6, PO-7, PO-
1. recall the types of fuels and their distinctive properties, combustion chemistry and stoichiometry.	8, PO-9, PO-10, PO-11, PO-12
2. identify the factors influencing flame characteristics and formulate models using the conservation equations to study different combustion parameters.	
3. compare different types of combustion systems and model the entire Fluidized Bed Combustion (FBC) phenomenon.	
4. explain the formation of pollutants and discuss control mechanism of emissions, and emission index for premixed and non-premixed combustion.	
COURSE TEACHING AND LEARNING ACTIVITIES	

S.No.	Week	Торіс	Mode of Delivery
1	WEEK-1	Introduction to combustion, Review of thermodynamics, combustion chemistry	Chalk and Talk
	WEEK-2	Stoichiometry, calculation of HHV and LHV, heat of reaction	
	WEEK-3	Adiabatic flame temperature, Chemical equilibrium, Kp, Determination of equilibrium composition	

WEEK-4	Simplified proc.to get eq. composition Mass transfer-Ficks law Stefan problem	
WEEK-5	Droplet evaporation, transfer no., droplet evaporation time, Problems on mass transfer	
WEEK-6	Introduction to kinetics, Reaction mechanismproof for Kp= Kc , first order rate coefft., chain reactions	
WEEK-7	Reaction mechanisms for HC molecules. Combining thermodynamics to reactive systems	
WEEK-8	Review of mass, momentum and energy eqs., Conserved scalar concept. Laminar premixed flames, characteristics, simplified Spalding model for S _L and δ	
WEEK-9	Fuels- their types, Characterisation of coal. Determination of HHV – calorimeters, DSC, TGA, CHNSO analysers. Kinetic theory applied to Binary diffusion and kinetics rate coeffts.	Seminars with ppts
WEEK-		
10	Const. pr, const. vol reactor, well stirred reactor and plug flow reactor models, Effect of pr. and Temp on S _L and δ. Diffusion flames, models to analyse them	
WEEK- 11	Turbulent flames, turbulent flame velocity correlations, droplet evaporation model, solution to model	
WEEK- 12	Stokers, FBC CFBC and p-f combustors, cyclone furnace, atomisers for liquid fuels, gas burners.	
WEEK-	Burning of solid carbon partice,	

	13	model and solution, Emission Index and corrected conc. HC, CO and NOX formation mechanisms		
	WEEK- 14	Pollutaion control techniques, SCR, SNCR, Staged combustion, Catalytic converters for SI engines.		
COUR	SE ASSESS	MENT METHODS		<u> </u>
S.No.	Mode of	Week/Date	Duration	% Weightage
	Assess ment			
1	Cycle Test-1	7 th week	1 Hour	20%
2	Cycle Test-1	12 th week	1 Hour	20%
3	Retest	14 th week	1 Hour	
4	Seminar	9 th week – 14 th week		10%
5			3 Hour	50%
				Total = 100 Marks
ESSEN	ITIAL READ	DINGS : Textbooks, refere	ence books Website a	ddresses, journals, etc
1. 2. 3.	S.R. Turns, Archie W C Amitava Da	"An introduction to Com ulp, " Principles of energet atta, "Combustion- Funda	nbustion", 3 Ed., McG gy conversion", McG amentals and applica	Fraw Hill, 2012 raw Hill, 1991 tions", Narosa, 2017.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)	
 Feedback from students during class committee meeting Anonymous feedback through questionnaire (as followed currently) 	
COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)	
 Test 1 and Test2 will be conducted in the class. Use of approved Tables and scientific calculator permitted 75% attendance compulsory for wrting the end semester examination 	
ADDITIONAL COURSE INFORMATION	
The Faculty is available for consultation after the class hours in the Mech. Engg. Dept.	
Faculty may also be contacted on mobile : 9487257871	
FOR SENATE'S CONSIDERATION	
Course Faculty CC-Chairperson HOD	