NATIONAL INSTITUTE OF TECHNOLOGY: TIRUCHIRAPPALLI- 620 015 DEPARTMENT OF MATHEMATICS

COURSE OUTLINE TEMPLATE			
Course Title	MA 613: Engineering	Mathematics	
Course Code	MA 613	No. of Credits	3
Department	Mathematics	Course: M. Tech Branch: Material Science & En	99
Pre-requisites Course Code	B. Tech, Engineering Mathematics		
Course Coordinator(s) (if, applicable)	Dr. K. Murugesan		
Other Course Tead	cher(s)/Tutor(s)	Email Id	Telephone No.
	Murugesan	murugu@nitt.edu	9486001132 3661,3668
Course Type	√ Core course	Elective course	
COURSE OVERVIEW			
To understand the mathematical applications to engineering problems using PDE, Calculas of variations, Numerical methods and Finite element methods.			
COURSE OBJECTIVES			
 To make the students mathematically strong for solving engineering and scientific problems. To train students with mathematical aspects so as to comprehended, analyse, design and create novel products and solution for the real life problems. 			

COURSE	OUTCOMES	(CO)
--------	----------	------

Aligned Programme Outcomes (PO)
The engineering post graduates will apply their knowledge of mathematics to engineering problems.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week	Topic	Mode of Delivery
	Week- 1	 Basic concepts PDE One dimensional heat flow equations and its solutions Solve some more problems + Tutorials 	Chalk and Talk
	Week - 2	 4. Two dimensional heat flow equations 5. Solve some more problems 6. Polar and Cartesian forms 7. Solve some more problems + Tutorials 	
	Week-3	 Basic concepts of calculus of variations Euler's equation Euler's equation in function of several variables Functionals involving higher order derivatives + Tutorials 	Chalk and Talk

Week - 4	 5. Variational problems in parametric form 6. Natural boundary condition 7. Conditional Extremum 8. Isoperimetric problems + Tutorials 	
Week -5	 Numerical Solution of ODE's Taylor's method Euler's, methods Improved & Modified Euler method + Tutorials 	Chalk and Talk
Week - 6	 5. Runge Kutta methods 6. Runge - Kutta method for simultaneous differential equations 7. Milne's predictor-corrector methods 8. Adams' predictor-corrector methods + Tutorial 	
Week – 7	 Classification of PDE's Finite difference scheme method Elliptic equations – Laplace equation in 2D Elliptic equations – Poisson's equation + Tutorials 	Chalk and Tall
Week - 8	 5. Parabolic equations (one dimensional heat equation) 6. Bender Schmidt method 7. Crank-Nicholson method 8. Hyperbolic equations – two dimensional wave equation + Tutorials 	
Week -9	 Introduction to Finite Element Method Rules for forming interpolation functions Shape functions + Tutorials 	Chalk and Tal
	4. Application to fluid flow	

Week -10

5. Application to heat transfer problems + Tutorials

COURSE ASSESSMENT METHODS

S.No.		Week/Date	Duration	% Weightage
1.	Cycle Test –I	4 th week	1 Hour	20%
2.	Cycle Test-II	8 th week	1 Hour	20%
3.	Retest	9 th week	1 Hour	
4.	Assignments (Two)			10%
5.	End Semester Exam	After 12 week	3 Hour	50% Total : 100 Marks

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

Reference Books

- Grewal, B.S., Higher Engineering Mathematics, 42ndedition, Khanna Publications, Delhi, 2012.
- 2. Venkataraman, M.K, Higher Engineering mathematics, National Publishing Co. 2003.
- 3. Desai, C.S, & Abel, J.P, Introduction to Finite Element Method, Van Nostrand Reinhold.
- 4. Reddy, J.N, Introduction to Finite Element Method, McGraw-Hill.

ADDITIONAL COURSE INFORMATION

eg.: The Course Coordinator is available for consultation at times that are displayed on the coordinator's office notice board. Queries may also be emailed to the Course Coordinator directly at ------

FOR SENATE'S CONSIDERATION

Course Faculty 319

CC-Chairperson

gla HOD S: Mulik