NATIONAL INSTITUTE OF TECHNOLOGY: TIRUCHIRAPPALLI- 620 015 DEPARTMENT OF MATHEMATICS | COURSE OUTLINE TEMPLATE | | | | |--|----------------------------------|--|-------------------------| | Course Title | MA 613: Engineering | Mathematics | | | Course Code | MA 613 | No. of Credits | 3 | | Department | Mathematics | Course: M. Tech
Branch: Material Science & En | 99 | | Pre-requisites Course Code | B. Tech, Engineering Mathematics | | | | Course
Coordinator(s)
(if, applicable) | Dr. K. Murugesan | | | | Other Course Tead | cher(s)/Tutor(s) | Email Id | Telephone No. | | | Murugesan | murugu@nitt.edu | 9486001132
3661,3668 | | Course Type | √ Core course | Elective course | | | | | | | | COURSE OVERVIEW | | | | | To understand the mathematical applications to engineering problems using PDE, Calculas of variations, Numerical methods and Finite element methods. | | | | | COURSE OBJECTIVES | | | | | To make the students mathematically strong for solving engineering and scientific problems. To train students with mathematical aspects so as to comprehended, analyse, design and create novel products and solution for the real life problems. | | | | | COURSE | OUTCOMES | (CO) | |--------|----------|------| |--------|----------|------| | Aligned Programme
Outcomes (PO) | |---| | The engineering post graduates will apply their knowledge of mathematics to engineering problems. | | | | | | | ## COURSE TEACHING AND LEARNING ACTIVITIES | S.No. | Week | Topic | Mode of
Delivery | |-------|----------|---|---------------------| | | Week- 1 | Basic concepts PDE One dimensional heat flow equations and its solutions Solve some more problems + Tutorials | Chalk and Talk | | | Week - 2 | 4. Two dimensional heat flow equations 5. Solve some more problems 6. Polar and Cartesian forms 7. Solve some more problems + Tutorials | | | | Week-3 | Basic concepts of calculus of variations Euler's equation Euler's equation in function of several variables Functionals involving higher order derivatives + Tutorials | Chalk and Talk | | Week - 4 | 5. Variational problems in parametric form 6. Natural boundary condition 7. Conditional Extremum 8. Isoperimetric problems + Tutorials | | |----------|---|----------------| | Week -5 | Numerical Solution of ODE's Taylor's method Euler's, methods Improved & Modified Euler method + Tutorials | Chalk and Talk | | Week - 6 | 5. Runge Kutta methods 6. Runge - Kutta method for simultaneous differential equations 7. Milne's predictor-corrector methods 8. Adams' predictor-corrector methods + Tutorial | | | Week – 7 | Classification of PDE's Finite difference scheme method Elliptic equations – Laplace equation in 2D Elliptic equations – Poisson's equation + Tutorials | Chalk and Tall | | Week - 8 | 5. Parabolic equations (one dimensional heat equation) 6. Bender Schmidt method 7. Crank-Nicholson method 8. Hyperbolic equations – two dimensional wave equation + Tutorials | | | Week -9 | Introduction to Finite Element
Method Rules for forming interpolation
functions Shape functions + Tutorials | Chalk and Tal | | | 4. Application to fluid flow | | Week -10 5. Application to heat transfer problems + Tutorials #### COURSE ASSESSMENT METHODS | S.No. | | Week/Date | Duration | % Weightage | |-------|----------------------|----------------------|----------|-----------------------| | 1. | Cycle Test –I | 4 th week | 1 Hour | 20% | | 2. | Cycle Test-II | 8 th week | 1 Hour | 20% | | 3. | Retest | 9 th week | 1 Hour | | | 4. | Assignments (Two) | | | 10% | | 5. | End Semester
Exam | After 12 week | 3 Hour | 50% Total : 100 Marks | ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc #### Reference Books - Grewal, B.S., Higher Engineering Mathematics, 42ndedition, Khanna Publications, Delhi, 2012. - 2. Venkataraman, M.K, Higher Engineering mathematics, National Publishing Co. 2003. - 3. Desai, C.S, & Abel, J.P, Introduction to Finite Element Method, Van Nostrand Reinhold. - 4. Reddy, J.N, Introduction to Finite Element Method, McGraw-Hill. ## ADDITIONAL COURSE INFORMATION **eg.:** The Course Coordinator is available for consultation at times that are displayed on the coordinator's office notice board. Queries may also be emailed to the Course Coordinator directly at ------ ### FOR SENATE'S CONSIDERATION Course Faculty 319 **CC-Chairperson** gla HOD S: Mulik