

DEPARTMENT OF INSTRUMENTATION & CONTROL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

SHRAFT								
	COURSE PLA	N – PART I						
Name of the	M Tech Br	acess Control & Instru	montation					
programme and	M.Tech. Process Control & Instrumentation							
specialization	(II Semester, 2020-22 Batch)							
Course Title	Computational Techniques in Control Engineering							
Course Code	CL 652	No. of Credits	3	3				
Course Type	✓ Core	Elective co	urse					
Pre-requisite(s)								
Session	January 2021	Section	-	-				
Name of Faculty	Dr. Ramakalyan Ayyagari Department		ICE Dept					
Official Email	rkalyn@nitt.edu	Telephone No.	+91.944.	392.3485				
Syllabus (approved in	the BoS)							
Review of Linear Algebra: Vector spaces, Orthogonality, Matrices, Vector and Matrix Norms, Kronecker Product Numerical Linear Algebra: Floating point numbers and errors in computations, Conditioning, Efficiency, Stability, and Accuracy, LU Factorization, Numerical solution of the Linear system Ax = b, QR factorization, Orthogonal projections, Least Squares problem, Singular Value Decomposition, Canonical forms obtained via orthogonal transformations.								
Observability, Stability, Sylvester equations.	is: Linear State-space models a Inertia, and Robust Stability, No	umerical solutions and co	onditioning of	Lyapunov and				
	ท: Feedback stabilization, Ei Algebraic Riccati equations, Nu		•					
Large scale Matrix computations, Some Selected Software								
Course Objectives								
1. To expose the students to algorithmic control system design								
	2. To introduce matrix algebraic results useful for key computations in analysis and design							
3. To introduce large-scale systems and controller design using data-based techniques								
4. To train the student to develop software exclusively for control problems.								
Mapping of COs with								
	Course Outcomes		n Objectives					
1. In units I & II, c	nd 1,2							
Probability will be rein	-							
2. In unit III, students will be exposed to algorithms for computing the state transition matrix will be explored. Algorithms for numerically determining								
	-	_						
the stability of system		/						
several (nearly 20) such algorithms, but 4 major algorithmic ideas will be								
discussed in detail.								
3. In unit IV, students are taken up to higher levels of computationally								
difficult problems and algorithmic design through the static state feedback 1,2,3,5,7 control design problem.								
	es will be shown, and comm	ercial algorithms shall	be					
learnt. The course concludes with an overview of advanced algorithms for 1,2,3,5,7,12 nonlinear systems and stochastic systems								

COURSE PLAN – Part II							
Course O	verview						
This cour	se is an adaptation of	numeric	al methods pe	rtaining to control eng	ineering problems,		
particular	ly of very high order.	The algo	orithms for cor	ntrol system analysis &	design are set in a		
numerica	l algebraic framework	and are d	designed and a	nalyzed in a formal way	•		
Course Te	eaching & Learning Act	ivities					
Classes	Classes Week(s)		Topic(s)		Mode of Delivery		
1-3			uction to the course		Board		
4 – 12	Feb 8 – 26Review Theory		of Linear A	Board			
13 – 24	Mar 1 – 26		nms for computing State Transition and computing the Lyapunov matrix.		Board/PPT		
25 – 30	Mar 29 – Apr 9	0	ms for computing the state k matrix		Board/PPT		
31 – 40	Apr 12 – 30		Discussion on commercial algorithms, Algorithms for nonlinear systems etc.		Board/PPT		
Course As	ssessment Methods						
S.No.	Mode of Assessm	ent	Date	Duration	% Weightage		
1.	Assessment – 1 (written)		February 26	60 minutes	15%		
2.	Assessment – 2 (written)		March 26	60 minutes	15%		
3 & 4.	Assessment – 3 & 4 Individual Projects		Submission before <u>April 26</u> Presentation before <u>May 7</u>		40%		
СРА	Compensatory Assessment, if any		May 7	60 minutes	15%		
5.	Assessment – 4 (written)		May 17	120 minutes	30%		
Essential	Readings:						
availa 2. B.N. D 3. B.N. D 4. G.H. O 5. Higha 6. Get M	ble. Datta, <i>Numerical Metho</i> Datta, Numerical Linear Golub & C.F. Van Loan, m & Higham, Accuracy	ods for Li Algebra Matrix C and Stal the CSG)	near Control Sy & Applications Computations, 4 bility of Numer	M, 2016. Video lecture <i>estems</i> , Elsevier Academ , 2/e, SIAM, 2010. I/e, John Hopkins Unive ical Algorithms, 2/e, SIA s and visit National Inst	nic Press, 2005. Prsity Press, 2012. M, 2002		
Course Ex	•						
Feedback from the students during the class committee meetings							
Feedback before End-term examination through a questionnaire, for improvements in future.							
	olicy (including plagiar		-	-			
Attendan • • •	At least 75% attenda A maximum of 10% s	nce durir hall be a han 65% be awar	ng the class-wo llowed under C of attendance ded 'V' grade	On Duty (OD) category. shall be prevented fro			
_	Grading would be rela	ative, wi	th class-averag	ge (out of 100) shall be ow average shall get C, I			

As per the recommendation of the senate (M.10.2 & M.10.3),

- A minimum of 30 % should be scored in the final assessment for a pass.
- The passing minimum shall be MAX{35% or Average/2}
- The award of "S" grade in the course is restricted to a maximum of 10% of the total number of students.

Academic Honesty:

- All the assessments, including the programming project in this course must be strictly individual work. However, collaboration by individuals is encouraged at the level of ideas.
- Feel free to ask each other questions, or brainstorm on solutions, or work together on a board. However, be careful about copying the actual solution. This sort of collaboration at the level of artifacts is permitted if explicitly acknowledged, but this is usually self-defeating.
- The principle behind the collaboration rule is simple:
 I want you to learn as much as possible; you may learn from me or from each other.
- The goal of artifacts is simply to demonstrate what you have learned. So, I'm happy to have you share ideas, but if you want your own points you have to internalize the ideas and then craft them into an artifact by yourself, without any direct assistance from anyone else, and without relying on any idea taken from others (whether at this institute or from the web).

Academic Dishonesty: For purposes of this class, academic dishonesty is defined as follows:

- Any attempt to pass off work on a test that didn't come straight out of your own head.
- Any collaboration on artifacts in which the collaborating parties do not clearly explain exactly who did what, at turn-in time.
- Any activity that has the effect of significantly impairing the ability of another student to learn. Examples here might include destroying the work of others, interfering with their access to resources, or deliberately providing them with misleading information.

Further, the recommendation of the Senate with reference to Academic Dishonesty is as follows:

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

ADDITIONAL COURSE INFORMATION

All the students are urged to be interactive during the classes. Further, the students are suggested to make a google group for faster dissemination of PPTs, discussions on projects etc. They are free to interact with me over email any time, and if needed meet me in person with prior appointment.

FOR SENATE'S CONSIDERATION

Course Faculty (Dr. Ramakalyan Ayyagari)

Lunnster CC-Chairperson K Muthukumar 08 02 2021

(Dr. P. Kalaichelvi)