

DEPARTMENT OF INSTRUMENTATION & CONTROL ENGG

COURSE PLAN – PART I							
Name of the programme and specialization	B.Tech. in Instrumentation & Control Engg.						
Course Title	Control Systems - (IV Se	emester)					
Course Code	ICPC16	ICPC16 No. of Credits 4					
Course Code of Pre- requisite subject(s)							
Session	January 2021	Section (if, applicable)	В				
Name of Faculty	me of Faculty Dr. K. Srinivasan De		ICE Department				
Official Email	srinikkn@nitt.edu	Telephone No. 0431-2503363					
Course Type (please tick appropriately)	Core course	Elective course					

Syllabus (approved in BoS)

Review of Systems, Mathematical Models – Differential Equations, Linear Approximations and Transfer Functions, Block Diagrams and Signal Flow Graphs, Feedback Control System Characteristics, and Performance Specifications on transients and steady-state, Stability of Linear Feedback Systems – Routh-Hurwitz criterion. The Root Locus Method, Feedback Control System Analysis & Performance Specifications in Time-Domain, Frequency Response Methods, Nyquist's Stability Criterion, Bode Plots, Performance Specifications in Frequency-Domain, Stability Margins. Design of Lag and PID controllers in Frequency Domain, Design of Lead, Lag, Lag-Lead and PID Controllers using time-domain and frequency-domain methods.

COURSE OBJECTIVES

1. To introduce the concept of feedback control system

2. To impart knowledge in mathematical modeling of physical systems

3. To impart knowledge in characteristics and performance of feedback control system

4. To teach a variety of classical methods and techniques for analysis and design of control systems

MA	MAPPING OF COs with Pos				
	Course Outcomes	Programme Outcomes (PO)			
1.	Generate mathematical models of dynamic control system by applying differential equations	1			
2.	Analyze and characterize the behavior of a control system in terms of different system and performance parameters	3			
3.	Compute and assess system stability	5			

4.	Evaluate and analyses system performance using frequency and transient response analysis	5
5.	Design and simulate control systems (linear feedback control systems, PID controller, and multivariable control systems), using control software, to achieve required stability, performance and robustness	4,5,6
6.	Critically analyses and outline the dynamic response of closed loop systems	6

COURSE PLAN – PART II					
COURSE OVERVIEW					
COURSE TEACHING AND LEARNING ACTIVITIES					
S.No.	Week / Contact Hours	Торіс	Mode of Delivery		
1	First – Nineth Week	Types of Systems, Mathematical Models – Differential Equations, Linear Approximations and Transfer Functions, Block Diagrams and Signal Flow Graphs, Feedback Control System Characteristics and Performance Specifications on transients and steady-state, Stability of Linear Feedback Systems – Routh-Hurwitz criterion. The Root Locus Method, Feedback Control System Analysis & Performance Specifications in Time- Domain.	Digital/white board		
2	End of Sixth Week	Assessment – 1: Assignment based on problem solving	10% Weightage		
3	End of Tenth week (22-26 March)	Assessment – 2: Written exam (Open book test)	20% Weightage		
4	Tenth–Fourteenth week	Frequency Response Methods, Nyquist's Stability Criterion, Bode Plots, Performance Specifications in Frequency-Domain, Stability Margins. Design of Lead, Lag, Lag-Lead and PID Controllers using time-domain and frequency-domain methods.	Digital/white board/ Power point presentation		
5	Fifteenth Week	Assessment – 3: Assignment based on problem solving and simulation	15% Weightage		
6	Sixteenth Week (3 rd or 4 th May)	Compensation Assessment	20% Weightage		

7	Seventeenth week	Assessment – 4: Mini project and viva voce			25% Weightage		
8	End of Nineteenth week (24-28 May)	Final Assessment: Written Exam			30% Weightage		
COUR	COURSE ASSESSMENT METHODS						
S.No.	Mode of Assessment		Week/Date	Duration		% Weightage	
1	Assignment based on Problem solving (Minimum GATE level Question paper) with Seminar		End of Sixth Week			10%	
2	Written exam (Open book test)		End of Tenth week (22-26 March)	One hour		20%	
3	Assignment based on Problem solving (Minimum GATE level Question paper) with Seminar		Fifteenth Week			15%	
СРА	Compensation Assessment*		Sixteenth Week (3 rd or 4 th May)	One hour		20%	
4	Mini project and viva voce		Seventeenth week (10 – 13 May)			25%	
5.	Final Assessment * (Written Exam)		End of Nineteenth week (24-28 May)	Two hours		30%	
*mandatory: refer to guidelines on page 4							
COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)							

- 1. Indirect feedback through questionnaire.
- 2. Direct feedback from the students by institute.
- 3. Feedback from the students during the class committee meetings.

COURSE POLICY (including compensation assessment to be specified)

Only one compensation will be conducted during **Thirteenth week** for the students absent for assessment due to medical and other genuine reasons. The course faculty decision will be the final to decide about a retest. The exam will be conducted based on entire syllabus. The duration of the exam is 1 hour. If the student absents themselves for more than one assessment, other assessment marks will be awarded as zero.

Retest / Re-examination:

If the student got less than 35% with satisfactory attendance requirement (Refer Attendance policy), he/she has to undergone retest / supplementary examination.

Retest / Supplementary examination will be conducted as per the institute norms.

Passing Criteria / Awarding Grades:

35% or (Class average/2) whichever is higher is the minimum passing criteria for this subject. If the student failed even after reexamination and absent for reexamination, he/ she should undergo formative assessment. Other grades are awarded based on relative grades as per institute norms.

ATTENDANCE POLICY (as per the institute norms)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM (as per the institute norms)

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

- 1. Students can meet any time depends on their mutual availability.
- 2. The course faculty will be available in ICE department ground floor inside process control lab in his cabin.
- 3. Minor doubts will be clarified during the class hours.

Any suggestions, Queries and feedback can be emailed to the course faculty at srinikkn@nitt.edu

FOR APPROVAL			
k. Class / Type text	here	p.Vanh'	my
Course Faculty	CC- Chairperson	05.02.2021	_ HOD

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in					P.G.
2020	2019	2018	2017	2016	
35% or (Class average/2) whichever (Peak/3) or (Class Average			ass Average/2)	40%	
is greater.			whichever is low	wer.	

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.