

DEPARTMENT OF CHEMISTRY

COURSE PLAN – PART I				
Name of the programme and specialization	B.Tech. (Instrumentation and Control Engineering)- II Sem			
Course Title	Chemistry (Theory)			
Course Code	CHIR11 No. of Credits		3	
Course Code of Pre- requisite subject(s)	Nil			
Session	Jan 2021	Section (if, applicable)	Α	
Name of Faculty	Dr. M. Karthik	Department	Chemistry	
Official Email	karthikm@nitt.edu	Telephone No.	+91-9944672121(M)	
Name of Course Coordinator(s) (if, applicable)	Dr. M. Karthik			
Official E-mail	karthikm@nitt.edu	Telephone No.	+91-9944672121 (M)	
Course Type (please tick appropriately)	Core course	Elective cours	е	

Syllabus (approved in BoS)

Theory (Units):

Unit 1: Electrochemistry and Corrosion

Cell EMF-its measurement and applications -concentration cell -electrode electrolyteconcentration cell -concentration cell with and without transference -Dry corrosion and wetcorrosion, mechanisms, types of corrosion, Differential Metal corrosion, Differential Aeration corrosion, intergranular, Passivity, Pitting, Polarization -Chemical conversion coatings and organic coatings-Paints, enamels.

Unit 2: Phase rule

Definition of terms –phase-components-degree of freedom-derivation of Gibbs phase rule –one component system – H_2O , CO_2 , Sulfur –Two-component system –Eutectic systems –reduced phase rule -Pb-Ag system –Compound Formation with congruent melting –Zn-Mg Alloy system-Copper-nickel alloy system -systems with incongruent melting – Na_2SO_4 - H_2O systemand simple three-component systems.

Unit 3: Water

Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge-Caustic embrittlement -softening of water, zeolite process & demineralization by ion exchangers, boiler feed water, internal treatment methods-specifications for drinking water, BIS & WHO

standards, treatment of water for domestic use, desalination -Reverse osmosis &Electrodialysis.

Unit 4: Spectroscopy

Interaction of electromagnetic radiation with matter, Electronic spectroscopy -Theory of electronic transitions, instrumentation,Beers-Lambert law, Woodward FIESERrule, applications. IR spectroscopy -Fundamentals, Instrumentation and applications, Raman spectroscopy –Fundamentals and applications.

Unit 5: Polymers and Composites

Concept of macromolecules-Tacticity-Classification ofPolymers-Typesof Polymerization-Mechanism--Ziegler Natta Polymerization -Effect of Polymer structure on properties -Important addition and condensation polymers –synthesis and properties –Molecular mass determination of polymers-Static and dynamic methods, Light scattering-Rubbers-Vulcanization-Synthetic rubbers –Conducting polymers-Composite materials

Reference and Text Books

- 1. P. C. Jain & M. Jain, *Engineering Chemistry*, DhanpatRai Publishing Company, New Delhi, 2005.
- 2. P. W. Atkins and J. de Paula, *Physical chemistry*, Oxford University Press, 2002.
- 3. B.R. Puri, L.R.Sharma, M.S.Pathania, *Principles of Physical Chemistry*, Vishal Publishing Company, 2008.
- 4. F.W. Billmayer, *Textbook of Polymer Science*, 3rd Edition, Wiley. N.Y. 1991.
- 5. S.S. Darer, S.S.Umare, A Text Book of Engineering Chemistry, S.Chand Publishing, 2011.
- 6. Donald L. Pavia Gary M. Lampman George S. Kriz James R. Vyvyan, *Introduction to spectroscopy*, 3rd Edition, Brooks/Cole Cengage learning, 2011.

COURSE OBJECTIVES

To introduce the student's basic principles of Electrochemistry and Corrosion. They will be familiar with phase rule & its applications. Students will know about the essential requirements of water and its importance in day-to-day life. To provide students with a brief outline of the types and applications of polymers. Finally, students will be equipped with the usage of spectroscopy in industrial applications.

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
Students will learn about the:	
 Students will learn about the Electrochemistry and phase rule They will be familiarized with the importance of polymer and its application in industries and its interpretation to understand the matter at atomic scale. A brief introduction in the area of water, spectroscopy will be very useful for the students in future endeavor. 	1, 8, 11, 12

COURSE PLAN - PART II

COURSE OVERVIEW

This is a 3 credit course offered to I year B.Techstudents. Three theory classes will be conducted per week. This course provides a thorough understanding of the subject through lectures, tutorials and demonstrations.

	OURSE TEACHING AND LEARNING ACTIVITIES (Add more rows)				
S.No.	Week/Contact Hours	Topic	Mode of Delivery		
1	II week of April 2021	Sources, Hard & soft water, Estimation of hardness by EDTA method, Scale & Sludge-Causticembrittlement, Softening of water, zeolite process & demineralization by ion exchangers,	PPT		
2	III week of April 2021	Boilerfeed water, internal treatment methods Specifications for drinking water,BIS & WHO standards, Treatment of water for domestic use, desalination - Reverse osmosis & Electrodialysis.	PPT		
3	IV week of April 2021	Dry corrosion and wet corrosion, mechanisms, types of corrosion, Differential metal corrosion, differential aerationcorrosion Intergranular corrosion Passivity, Pitting,	PPT		
4	I week of May 2021	Chemical conversion coatings and organic coatings- Paints, enamels. Introduction to electrochemistry & Cell EMF- its measurement and applications	PPT		
5	II week of May 2021	concentration cell, electrode electrolyteconcentration cell - concentration cell with and without transference	PPT		
6	III week of May 2021	Interaction of electromagnetic radiation with matter, Electronic spectroscopy, Theory of electronic transitions, instrumentation, Beers Lambert law, Woodward Fieserrule, applications.	PPT		
7	IV week of May 2021	IR spectroscopy -Fundamentals, Instrumentation and applications, Raman spectroscopy -Fundamentals and applications. Concept of macromolecules-Tacticity-	PPT		
8	I week of June 2021	Definition of terms – phase- components- degree of freedom- derivation of Gibbs phase rule One component system – H ₂ O, CO ₂ , Sulfur	РРТ		

9	II week of June 2021	Two-component system – Eutectic systems-reduced phase rule - Pb-Ag system – Compound Formation with congruent melting Zn- MgAlloy system	PPT
10	III week of June 2021	Copper-nickel alloy system - systems with incongruent melting - Na ₂ SO ₄ -H ₂ Osystem and simple three-component systems.	PPT
11	IV week of June 2021	Classification of Polymers- Types of Polymerization-MechanismZiegler Natta Polymerization Effect of Polymer structure on properties - Important addition and condensation polymers	PPT
12	I week of July 2021	Synthesis and properties Molecular mass determination of polymers- Static and dynamic methods, Light scattering-Rubbers – Vulcanization – Synthetic rubbers – Conducting polymers- Composite materials	PPT

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

lacksquare					
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage	
Theory					
1	seminar/G.D./ assignment	IV week of April	1 week	5	
2	Test-I	II week of May	40 minutes	30	
3	seminar/G.D./ assignment	I week of June	One week	5	
4	Test-2	III week of June	40 minutes	30	
СРА	Compensation Assessment*	I week of July	40 minutes	30	
5	Final Assessment *	III week of July 2021	2 hours	30	

Total (100 Marks)

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1. Feedback from students during class committee meetings
- 2. Anonymous feedback through questionnaire at the end of the semester.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

E-mail: karthikm@nitt.edu / Phone: +91-9944672121

COMPENSATION ASSESSMENT POLICY

For those students who missed Test I and Test II due to genuine reasons, Compensation assessment will be conducted during 23.04.2020 - 27.04.2020.

ATTENDANCE POLICY(A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- ➤ The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY			
The respective facu faculty.	lty will be a	vailable for consultation at times	as per the intimation by the
FOR APPROVAL			
	P. S.	k. O-c/	03-05-2021
Course Faculty	V	CC- Chairperson	HOD

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2019	2018	2017	2016	
35% or (Class average/2) whichever is greater.		(Peak/3) Average/2) lower	or (Class whichever is	40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.