DEPARTMENT OF INSTRUMENTATION AND CONTROL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN				
Name of the Programme	M. Tech- Industrial Automation			
and Specialization				
Course Title	INDUSTRIAL AUTOMATION SYSTEMS			
Course Code	IC603	3		
Pre-requisites Course	NIL			
Code				
Session	July 2020	Section	NA	
Name of Faculty	Dr. N. SIVAKUMARAN	Department	ICE	
E-mail	nsk@nitt.edu	Mobile No.	09443745705	
Course Type	Core course Program Elective course			
Syllabus (As approved in BoS) Available on Department website				

Automation in Manufacturing Industries:

Introduction - Automation in production system, Principles and strategies of automation, Basic elements of an automated system, Advanced automation functions, Levels of Automations, Automated flow lines and transfer mechanisms, Analysis of transfer lines without storage, Automated flow lines with storage buffers.

Material handling and identification technologies -Overview of material handling systems, Types of material handling equipment, Design of the system, Conveyor system, Automated guided vehicle system, Automated storage systems, Interfacing handling and storage with manufacturing, Overview of Automatic Identification Methods.

Automated Manufacturing Systems (AMS) -Components, Classification and overview of manufacturing systems, Cellular manufacturing, Flexible manufacturing system (FMS), FMS and its planning and implementation, Automated assembly system – design and types of automated assembly systems, Analysis of multi station and single station assembly machine.

Automation in Process Industries:

Introduction to computer based industrial automation- Direct Digital Control (DDC), Distributed Control System (DCS) and supervisory control and data acquisition (SCADA) based architectures. SCADA for process industries includes understanding of RTUs, Pumping stations, Evacuation processes, Mass Flow Meters and other flow meters, Leak-flow studies of pipelines, Transport Automation.

Programmable Logic Controller (PLC)- Block diagram of PLC, Programming languages of PLC, Basic instruction sets, Design of alarm and interlocks, Networking of PLC, Overview of safety of PLC with case studies. Process Safety Automation: Levels of process safety through use of PLCs, Integrating Process safety PLC and DCS, Application of international standards in process safety control.

Distributed Control System- Local Control Unit (LCU) architecture, LCU Process Interfacing Issues, Block diagram and Overview of different LCU security design approaches, Networking of DCS. Introduction to communication protocols- Profibus, Field bus, HART protocols.

Data gathering, Data analytics, Real-time analysis of data stream from DCS, Historian build, Integration of business inputs with process data, Leveraging RTU (as different from PLCs and DCS).

COURSE OBJECTIVES

The subject aims

- 1. To introduce the importance of automation techniques manufacturing and process industries.
- 2. To impart the role of PLC in industry automation.
- 3. To expose to various control techniques employed in process automation.
- 4. To develop automation system for manufacturing and process industries.

COURSE OUTCOME (CO)				
Course Outcome (CO)	Aligned Program Outcomes (PO)			
On completion of this course, the students will be,				
1. familiar with various automation technologies in manufacturing and process industries.	1,2,3			
2. understand various automation tools and methods in manufacturing industry.	1,2,3			
3. implement various control and automation method in process industries.	1,2,3			
4. familiar with various communication technologies in manufacturing and process industries.	1,2,3			

COURSE OVERVIEW

This course is to familiarize students with different industrial automation techniques used in manufacturing and process industries such as PLC, DCS and communication protocol.

COURSE TEACHING AND LEARNING ACTIVITIES	

LECTURE	PERIODS/	TOPIC/ CONTENT	LECTURE		
NO.	WEEKS		DELIVERY MODE		
			Online through		
			Cisco Wohoy Moot		
			CISCO WEDEX MEET		
1-3		Automation in production system,	PPT,Video		
		Principles and strategies of			
		automation Advanced automation			
	1 st week	functions Levels of Automations			
		Automated flow lines and transfer			
		mechanisms			
1 6		Analysis of transfer lines without storage	DDT		
4 - 0		Analysis of transfer lines without storage,	FF I		
	2 nd week	Automated now nnes with storage			
		buffers. Material handling and			
		identification technologies			
7 – 9		Automated storage systems, Interfacing	PPT		
	3 rd week	handling and storage with			
	5 Week	manufacturing, Components, Classification			
		and overview of AMS			
10 - 12	4th week	Flexible manufacturing system (FMS),	PPT		
	4 week	FMS			
	From 4th wool	Assessment-1: Presentation and	PPT		
	From 4 week				
13 - 15	5 th week	PPT			
	J Week	types of automated assembly			

			systems, Analysis of multi station and				
16	10		single station assembly machine.				
10 -	18	6 th week	introduction	to computer based ind	ustrial and		
		0 WCCK	SCADA.SCA	ADA for process indu	ustries		
			includes unde	erstanding of RTUs			
19 – 2	21		Transport Au	tomation - Mass Flow N	Meters		PPT
		7 th week	and other flow meters, Leak-flow studies				
	22		of pipelines				x y · 1
22-2	23	Oth sees all	Programmabl	le Logic Controller (PLC)-	V1deo	
		8 week	BIOCK	diagram of PLC	PLC,		
25 – 2	27	- 4	Design of	f alarm and inter	locks.	РРТ	
20	2,	9 th week	Networking of	of PLC, case studies.	100105,		
28-2	.9		Process Safe	ety Automation, Integ	rating	PPT	
		10 th week	Process safet	ty PLC and DCS.Appli	cation		
		10 week	of internation	al standards in process	safety		
			control.	1 1 1 1	(200)		0.11
		End of 10 th week	Assessment-2 Weightage)	2: Written exam	(20%	Online	
30-3	2		Distributed C	Control System- Local C	ontrol		PPT
			Unit (LCU)	architecture, LCU P	rocess		
		11 th week	Interfacing	Issues, security (design		
			approaches. Networking of DCS.				
	Profibus, Field bus, HART protocols.						
33 – 3	35	12 th week	Data gatherin	ring, Data analytics, Real-time			PPT
		12 WCCK	analysis of da	ata stream from DCS			
36 - 3	38	1.2th	Historian build, Integration of business		PPT		
		13 th week	inputs with process data, Leveraging RTU (as different from PLCs and DCS)				
39 - 4	41	e este e	Review of Manufacturing and Process			РРТ	
		14 th week	industry auto	mation with case studies			
		Last week	Final Assessment: Written exam (30%		Online		
0.0777	ar t		Weightage)				
COUR	SE A	SSESSMENT METH	HODS				
Sl.No.	Mod	le of Assessment		Week/Date	Dura	tion	Percentage
1	Asse	essment 1 - Presentati	on and	From 4th week	1 h		20.04
Discu		cussions based on case	e studies				20 %
2	Assessment 2 – Written Exam		xam	End of 10th Week	1 h	our	20 %
				- inour		20 %	
3	CPA - Compensation Assessment*		End of 14th Week	1 hour 2		20 %	
4	Quiz/ Seminar /Assignment 1		9th week			15 %	
	Quiz/ seminar / Assignment 2		12th week			15 %	
5 Final Assessment* (End Semest		emester	End of the semester	2 hours 30 %		30 %	
	Exa	uu <i>)</i>					
*mandatory; refer to guidelines on page 4 and page 5							

ESSENTIAL READINGS: Textbooks, reference books, NPTEL notes, journals, etc.

Text Books

1. M. P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", 5th Edition, Pearson Education, 2009.

2. John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003.

3. Krishna Kant, "Computer - Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011.

4. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 2016.

Reference Books

1. Curtis D. Johnson,"Process Control Instrumentation Technology", 8th Edition, Pearson New International, 2013.

2. Lukas M.P, "Distributed Control Systems", Van Nostrand Reinhold Co., New York, 1986.

3. N. Viswanandham, Y. Narahari, "Performance Modeling of Automated Manufacturing Systems", 1st Edition, 2009.

4. https://nptel.ac.in/syllabus/108108098/

COURSE EXIT SURVEY

Feedback from the students during the class committee meetings.

Feedback before End-term examination through a questionnaire, for improvements in future.

COURSE POLICY

• Compensation Assessment: A student can be, upon prior approval, absent from only one out of the continuous assessments (1 or 2), for which he/she is allowed to take the compensatory assessment during mid December, 2020. Note that this assessment is not offered as an improvement test for everyone.

ATTENDANCE (REMEMBER THIS IS A 3-CREDIT COURSE)

• Cf. M.6.0 (page 6, https://www.nitt.edu/home/academics/rules/PG-Regulations-2019.pdf) 75% attendance, with an exemption up to 10% on genuine grounds (on-duty); prior information and approval from the instructor is compulsory.

• Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

• The only option for students with attendance < 65% is RE-DO.

ASSESSMENTS AND GRADING POLICY

• Cf. M.10.2 (page 10, https://www.nitt.edu/home/academics/rules/PG-Regulations-2019.pdf)A minimum of 30% should be scored in the final assessment for a pass.The passing minimum is 35% or Class Average/2, whichever is higher; grading is done for those students declared passed based on the class average – average and above shall get S, A, and B grades, and below average shall get C, D, and E.

ACADEMIC HONESTY

• Mid-term and End-term assessments in this course must be strictly individual work.

ACADEMIC DISHONESTY

For purposes of this class, academic dishonesty is defined as:

• Any attempt to pass off work on a test that didn't come straight out of your own head.

• Any collaboration on artifacts in which the collaborating parties do not clearly explain exactly who did what, at turn-in time.

• Any activity that has the effect of significantly impairing the ability of another student to learn. Examples here might include destroying the work of others, interfering with their access to resources, or deliberately providing them with misleading information.

• Please make a careful note of: ACADEMIC DISHONESTY & PLAGIARISM (cf. M.21.0 & M.22.0, page 13, https://www.nitt.edu/home/academics/rules/PG-Regulations-2019.pdf)

• Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.

• Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.

• The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

• The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

The students are advised to clarify their doubts and discuss during the lecture hour. Other than, for out-of-class discussion, they can email their Queries to the Course faculty directly at nsk@nitt.edu

Any changes in the proposed layout of the semester, due to unavoidable circumstances, shall be intimated immediately to the students and to the Chairperson, PAC.

FOR APPROVAL

Course Faculty: (Dr. N. Sivakumaran)

CC-Chairperson: (Dr. D. Ezhilarasi)

HOD: (Dr. G. Uma)