DEPARTMENT OF INSTRUMENTATION AND CONTROL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE					
Course Title	Digital Electronics				
Course Code	ICPC 15	No. of Credits	3		
Department	ICE	Faculty	Dr. D. Ezhilarasi		
Pre-requisites Course Code	Basic level course on electron devices and Basic algebra				
Course	NA				
Coordinator(s)					
(if, applicable)					
Other Course Teacher(s)/Tutor(s) E-mail		Telephone No.	9444878908		
Course Type	Core course	<u>)</u>	<u> </u>		
COURSE OVERVIEW					
Boolean algebra, logic fa			cs include number systems, large scale integration		
0 0	-	0	ircuits. Upon completion,		
students should be able	to construct, analyze,	verify, and troublesho	ot digital circuits using		
appropriate techniques a	and test equipment.				
COURSE OBJECTIVES					
The subject aims to prov	ide the student with				
1) An understanding of r	-				
2) The capability to redu		U U			
3) The ability to design a	ind analyze combinati	onal and sequential lo	gic circuits for a given		
problem statement. 4) An understanding of Digital hardware and different types of logic families					
If the understanding of Digital hardware and unterent types of logic families					
COURSE OUTCOMES (CO)					
Students will:					
1.Understand how digital and logic computing is built from the fundamentals of semiconductor					
electronics and learn the capability to use abstractions to analyze and design digital electronic					
circuits					
 Gain knowledge on the basic logics and techniques related with digital computing Develop expertise to design and implement various complicated digital systems to be 					
applicable for signal measurement and processing					
Course Outcomes Aligned Programme Outcomes (PO)					
1. Understand how digital and logic 1. would have developed an ability to					
	omputing is built from the fundamentals of knowledgeof mathematics, sciences, and				
	emiconductor electronics and learn the engineering fundamentals to the field of				

capability to use abstractions to analyze and	instrumentation & control.
design digital electronic circuits	2 would have recorded a community
2. Gain knowledge on the basic logics and techniques related with digital computing	2. would have possessed a comprehensive understanding of a wider range of electronic devices, analog and digital electronic circuits and the state-of-the-art advanced electronic systems invariably found in every measurement and instrumentation system
3. Develop expertise to design and implement various complicated digital systems to be applicable for signal measurement and processing	3. would have recognized the need for engaging themselves in independent and life-long learning in the broadest context of technological change

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Hours	Topic	Mode of Delivery
1	12 hours	Review of number systems and logic gates, Algebraic reductions, Binary codes -Weighted and non-weighted, number compliments, Binary arithmetic, Error detecting and error correcting codes, SOP, POS Canonical logic forms, Karnaugh maps and Quine-McClusky methods, Don't care conditions, minimization of multiple output functions.	Chalk and talk
2	8 Hours	Synthesis of combinational functions: Arithmetic circuits- Adder/Subtractor, carry look-ahead adder, signed number addition and subtraction, BCD adders. IC adders. Multiplexers, implementation of combinational functions using multiplexers, de-multiplexers, decoders, code converters, Digital ICs for combinational logic circuits, Complexity and propagation delay analysis of circuits.	Chalk and talk
3	8 Hours	Sequential Logic: Basic latch circuit, Debouncing of a switch, Flip-Flops: truth table and excitation table, conversion of Flip- flops, integrated circuit flip-flops. Race in sequential circuits, Shift Registers, Counters - Synchronous, Asynchronous, Up- Down, Design of counters.	Chalk and talk
4	8 Hours	Analysis of clocked sequential circuits, Design with state equations, Moore and Mealy graphs, State reduction and assignment ,Sequence detection, Hazards. Programmable logic devices,Design using Programmable Logic Devices (ROM,PLA,PAL,FPGA).	Chalk and talk
5	8 Hours	Digital Hardware: Logic levels, Digital integrated circuits, Logic delay times, Fan-Out and Fan-In, Logic families, Interfacing between different families. CMOS Electronics: CMOS electronics and Electronic logic gates, The CMOS inverter, Logic formation using MOSFETs, CMOS memories.	Chalk and talk

COURS	COURSE ASSESSMENT METHODS							
S.No.	Mode of	Week/Date	Duration	% Weightage				
	Assessment							
1	Test-1	4 th week of August	1 hour	20%				
2	Test-2	1st week of October	1 Hour	20%				
3	2- Assignments	Month end(Sept, Oct)		10%				
4	Exam	1 st week of November	3 Hours	50%				
ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc								

1. M.M. Mano, Logic and Computer Design Fundamentals ,Pearson, 4thEdition, 2014

2. Floyd, Digital Fundamentals, 4th Edition, Universal Book Stall, New Delhi, 1992.

3. J.P. Uyemura, A First Course in Digital Systems Design, Brooks/Cole Publishing Co.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Written feedback from students Students' performance in test Problem solving ability from assignments

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

80% attendance must Passing minimum is 40 out of 100

ADDITIONAL COURSE INFORMATION

The Course Coordinator is available for consultation at any time during office hours. Queries may also be emailed to the Course Coordinator directly at ezhil@nitt.edu

FOR SENATE'S CONSIDERATION

Course Faculty _____ CC-Chairperson _____ HOD _____