

DEPARTMENT OF PHYSICS

Name of the	COURSE PL	AN - I AN I I		
programme and specialization	II Semester – B.Tech.	Chemical Enginee	ring	
Course Title	Physics - II	1		
Course Code	PHIR12	No. of Credits	4	
Course Code of Pre- requisite subject(s)	NIL			
Session	January. 2019	Section (if, applicable)	NIL	
Name of Faculty	Dr. M. Dhavamurthy	Department	Physics	
Official Email	dhavam@nitt.edu	Telephone No.	NIL	
Name of Course Coordinator(s) (if, applicable)	Dr. N.V. Giridharan Dr. S. Manivannan			
Official E-mail giri@nitt.edu ksmani@nitt.edu		Telephone No.	0431-250-3613 0431-250-3616	
Course Type (please tick appropriately)	√ Core course	Elective co	urse	

Syllabus (approved in BoS)

Quantum Mechanics

Inadequacy of classical mechanics-black body radiation, photoelectric effect, Compton effect – wave and particle duality of radiation – de Broglie concept of matter waves – electron diffraction – Heisenberg's uncertainty principle – Schrodinger's wave equation – Eigen values and Eigen functions – superposition principle – interpretation of wave function – particle confined in one dimensional infinite square well potential.

Nuclear and Particle Physics

Nuclear properties and forces - Nuclear models - Shell model - Nuclear reaction - Radioactivity - types and half-life - Stellar nucleosynthesis. Fundamental forces - Particle physics - classification of matter - quark model - neutrino properties and their detection.

Advanced Materials

Nanomaterials: introduction and properties – synthesis – chemical vapour deposition – ball milling – applications. Carbon nanotubes: structure and properties – synthesis – arc method – pulsed laser deposition- applications.

Liquid Crystals: types - nematic, cholesteric, smectic - modes: dynamic light scattering, twisted nematic - display systems.

Shape memory alloys-one way and two-way memory effect- pseudoelasticity-applications-thermoelectric materials.

Page 1 of 7

Introduction-Direct and indirect band gap semiconductors - Intrinsic semiconductor at 0K-Intrinsic semiconductor at room temperature-Intrinsic carriers- Electron and Hole concentrations-doping-n-type - p-type-temperature variation of carrier concentration in extrinsic semiconductor-Extrinsic conductivity-Law of Mass action-Charge neutrality-Fermi level in extrinsic semiconductors-Electrical conduction in extrinsic semiconductors.

Electrodynamics

Electrostatics: Coulomb's law - Gauss's law - proof of Gauss's law- Electrostatic field in matter: dielectric polarization, polarizability and susceptibility - types of polarization - internal field and Claussius-Mosotti equation. Magetostatics: Lorentz force - Steady current and equation of continuity - Biot-Savart law - Ampere's law - Magnetostatic field in matter: torques and forces on magnetic dipoles-Magnetization-Faraday's law of induction - Maxwell's equations: generalization of Ampere's law - propagation of EM waves in free space.

COURSE OBJECTIVES

- To make a bridge between the Physics in school and engineering courses.
- To introduce the concepts of matter waves, wave functions and its interpretation to understand the matter at atomic scale.
- To understand the fundamentals of nuclear forces, models and classification of matter.
- To know the basics of advanced materials and their applications.
- To familiarize the laws of electricity and magnetism, Maxwell's equation and electromagnetic wave propagation

MAPPING OF COs with POs	
Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
 Understand the inadequacy of Classical mechanics and how it is overcome by Quantum mechanics with its fundamentals. 	P1, P2,P9, P11
Experience the behavior of matter at atomic scale, role of nuclear and particle physics in applications like radioactivity and nuclear reactions.	P1, P2, P10, P11
 Acquire an exposure to nanomaterial synthesis, liquid crystal display and shape memory alloys. 	P1, P4, P7, P8, P10
 Appraise the types of semiconductors with their electrical conduction properties. 	P1, P2, P5, P7, P8
5. Familiarize the different concepts of electrostatic, time varying electromagnetic systems with their transmittance and significance of Maxwell's equation.	P1, P2, P3, P5, P7

Page 2 of 7

COURSE PLAN - PART II

COURSE OVERVIEW

- The Physics- II course (Code: PH-IR12) is offered in the second semester to all the branches of engineering.
- The subject has 3 credit theory and 1 credit lab weightage.

S.No.		EARNING ACTIVITIES	(Add more rows)
3.NO.	Week/Contact Hours	Topic	Mode of Delivery
1	07-11 Jan.2019	Inadequacy of classical mechanics- black body radiation, photoelectric effect, Compton effect - wave and particle duality of	Chalk & Talk, CD
2	16-18 Jan.2019	radiation – de-Broglie concept of matter waves - electron diffraction – Heisenberg's uncertainty principle –	Chalk & Talk, CD
3	21-25 Jan.2019	Schrodinger's wave equation – Eigen values and Eigen functions- one dimensional infinite square well potential.	Chalk & Talk, CD
4	28-01 Jan Feb.2019	Nuclear properties and forces - Nuclear models - Shell model - Nuclear reaction - Radioactivity	Chalk & Talk, CD, PPT
5	04-08 Feb.2019	Types of radioactivity - Stellar nucleo-synthesis. Fundamental forces - Particle physics.	Chalk & Talk, CD
6	11-15 Feb.2019	Classification of matter - quark model - neutrino properties and their detection	Chalk & Talk, CD, PPT
7	18-22 Feb.2019	Nanomaterials: introduction and properties – synthesis - chemical vapor deposition - ball milling - applications. Carbon nanotubes: structure and properties;	Chalk & Talk, CD, PPT
8	25-01 FebMar.2019	Structure and properties - synthesis - arc method - pulsed laser deposition-applications. Liquid Crystals: types - nematic, cholesteric, smectic - modes:	PPT, Class Discussio
9	04-08 Mar.2019	Dynamic light scattering, twisted nematic – display systems. Shape memory alloys-one way and two-way memory effect-pseudoelasticity-applications-thermoelectric materials.	Chalk & Talk, CD

Page 3 of 7

10	11-15 Mar.2019	Introduction-Direct and indirect band gap semiconductors - Intrinsic semiconductor at 0K -Intrinsic semiconductor at room temperature-Intrinsic carriers	Chalk & Talk, CD
11	18-22 Mar.2019	Electron and Hole concentrations- doping-n-type - p-type-temperature variation of carrier concentration in extrinsic semiconductor-Extrinsic conductivity-	Chalk & Talk, CD
12	25-29 Mar.2019	Law of Mass action-Charge neutrality-Fermi level in extrinsic semiconductors-Electrical conduction in extrinsic semiconductors	Chalk & Talk, CD, PPT
13	01-05 Apr.2019	Electrostatics: Coulomb's law - Gauss's law - proof of Gauss's law- Electrostatic field in matter: dielectric polarization, polarizability and susceptibility - types of polarization	Chalk & Talk, CD
14	08-12 Apr.2019	equation. Magetostatics: Lorentz force -Steady current and equation of continuity - Biot-Savart law – Ampere's law.	Chalk & Talk, CD
15	15-19 Apr.2019	Magnetostatic field in matter: torques and forces on magnetic dipoles- Magnetization-Faraday's law of induction	Chalk & Talk, CD
16	22-26 Apr.2019	Maxwell's equations: generalization of Ampere's law – propagation of EM waves in free space.	Chalk & Talk, CD
		Laboratory	
1	17, Jan.2019	Experiments 1,2,3,4 & 5	Demonstration and Hands-on training
2	24, Jan.2019	Experiments 1,2,3,4 & 5	Demonstration and Hands-on training
3	FebApr.2019	Experiments 1,2,3,4 & 5	Assessments Hands-on training

Page 4 of 7

S.No.	Mode of Assessment	Mark ID		
		Week/Date	Duration	% Weightage
	Cyclic Test - I	Feb. 2 nd Week	60 min	15
2	Quiz/Seminar	Feb. 1 st Week	30 min	05
3	Cyclic Test - II	Apr. 2 nd Week	60 min	15
CPA	Compensation Assessment	Apr. 3 rd Week	60 min	15 (or) 05
4	Laboratary Tests	During the Course	180 min	25
6	Final Assessment	Apr. 4 th Week	180 min	40

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- > Asking summary of each class at the end of class.
- Performance in the assessment methods.
- > Questionnaire about the effectiveness of the delivery method, topics and the knowledge

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Both e-mail and phone

COMPENSATION ASSESSMENT POLICY

> It is a test with duration of 60 min. Appropriate weightage will be calculated. ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- > Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.

Page 5 of 7

- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

ESSENTIAL READINGS: Textbooks, reference books, website addresses, journals, etc

- Concepts of Modern Physics. Arthur Beiser, Tata McGraw-Hill, New Delhi (2010).
- Fundamentals of Physics II, R. Shankar, Yale University Press, New Haven and London (2016).
- 3. Modern Physics, S.L. Kakani, Shubhara kakani, Viva books, (2011)
- 4. Hand Book of Non-destructive evaluation, C.J. Hellier, McGraw-Hill, New York (2001).
- Vacuum Science and Technology, V.V. Rao, T.B. Ghosh, K.L. Chopra, Allied Publishers, New Delhi (2008).
- 6. Introduction to Nanotechnology, C.P. Poole and F.J. Owens, Wiley, New Delhi (2007).
- Introduction to Liquid Crystals Chemistry and Physics, 2nd Ed, Peter J. Collings, Princeton University Press, New Jersey, (2002).
- Shape memory alloys modeling and engineering applications, Ed. D. C. Lagoudas, Springer, New York (2008).

FOR APPROVAL

Course Faculty

(M. Dhavamurthy)

C- Chairperson

HOI

Page 6 of 7

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in			P.G.	
2018	2017	2016	2015	
35% or (Class average/2) (Peak/3) or (Class Average/2) whichever is greater. whichever is lower		40%		

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.