NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	SE OUTLINE						
Course Title Ph		Physics I	Branch	EEE B			
Course Code		PHIR 11	No. of Credits	3 (2 credit theory+1 credit lab)			
Department		Physics	Faculty	Dr. P.Bahavan Pa	alani		
Depuis		T Hybres	1 dealey	211112411414111			
Pre-requisites		Nil					
Course Code							
Course		Dr. S. Manivannan					
Coordinator(s)		Dr. N. V. Giridharan					
(if, applicable)		T. 1. 1. 2007,00010					
	Course	bpalani@nitt.edu	Telephone	9965908012			
Teacher(s)/Tutor(s) E-mail			No.				
Course Type		✓ Core course Elective •		Nursa			
		Core course	Elective cot	Elective course			
COUR	SE OVERVIE	W					
		e is offered in the first semester to EEE B b	ranches of engi	neering The subje	ect has a		
	-	t theory and 1 credit practical lab weightage.	_	ecornig. The sacje	ot has a		
	SE OBJECTIV	, i					
		idge between the physics in school and engi	neering courses				
>	To introduce	the basic concepts of modern science like	e Photonics. Er	gineering applica	tions of		
		adamentals of crystal physics and materials s		8			
COUR	SE OUTCOM						
Course Outcomes			Aligned Prog	Aligned Programme Outcomes (PO)			
>	The student v	vill be able to:	Obtain	in-depth knowle	dge on		
>				nt Physics concept	-		
	based on lasers and optical fibers. Carry out independ				research		
>	Appreciate various material properties which are used work in interdisciplinary areas.						
	in engineering applications and devices.				nals in		
>				reas.			
>	Analyze the c	crystal structure of materials.	➤ Communicate ideas and learn				
>	Decide on	suitable materials for engineering	new tecl	mologies.			
	applications.						
COURSE TEACHING AND LEARNING ACTIVITIES							
S.No.	Week	Topic		Mode of I			
1.	41	Lasers Introduction to Laser-charact	eristics of I	asers- Lectures,	power		
		Spontaneous and stimulated emissions	11	point	ione		
		Einstein's coefficients – population inversio					
		Laser systems: Ruby laser, He-Ne Laser, ser		· 1			
		Applications:Holography- CD-drive – in	dustrial and n	edical discussion	11.50		
		applications.					

2.	4-22 nd Sep.	Fiber Optics Fermat's principle and Snell's law-optical fiber Principle and construction-acceptance cone - numerical aper V-Number Types of fibers, Fabrication: Double Crucible Technique, Vaphase Oxidation Process Fiber optic communication principle – fiber optic sensors applications of optical fibers.	e and construction-acceptance cone - numerical aperture – poer f fibers, Fabrication: Double Crucible Technique, Vapour xidation Process otic communication principle – fiber optic sensors-other		
3.	25 th Sep - 6 th Oct.	Acoustics Characteristics of musical sound – loudness – Vechner law – decibel Absorption coefficient – reverberation – reverberation time Sabine's formula – acoustics of buildings – ultrasonics Production of ultrasonics using piezoelectric meth magnetostriction method- applications.	Lectures, power point presentations, Class room discussions.		
4.	16-27 th Oct.	Crystallography Crystalline and amorphous solids – lattice and unit cell – seven crystal system Bravais lattices – symmetry operation -Miller indices Atomic radius – coordination number – packing factor calculation for sc, bcc, fcc Bragg's law of X-ray diffraction –Laue Method- powder crystal method. Lectures, power point presentations, Class room discussions.			
S. COUR	6-24 th Nov.	Magnetic materials, conductors and Superconductors Magnetic materials: Definition of terms – classification of magnetic materials and properties – domain theory of ferromagnetism- hard and soft magnetic materials – applications. Conductors: classical free electron theory (Lorentz –Drude theory) – electrical conductivity Superconductors: definition – Meissner effect – type I & II superconductors – BCS theory (qualitative) – high temperature superconductors – Josephson effect – quantum interference (qualitative) – SQUID – applications. MENT METHODS			
S.No.	Mode of	Week/Date	Duratio	on % Weightage	
1	Assessment Quiz- I	28 Agu1 st Sep.(Lasers)	30 min	10%	
2	Mid semester exam	9-13 th Oct.(Lasers, Fiber Optics, Acoustics)	60 min	20%	
3	Quiz – II	30 th Oct3 rd Nov. (Crystallography)	30 min	10%	
4	Assignment	25-30 th Nov.	NA	10%	
5	Semester exam	11-22 Dec.	180 min	50%	
		Total		100%	
6	Practicals	Five experiments 1. Torsional Pendulum 2. Numerical aperture of an Optical fibre 3. Radious of the curvature of lens-Newton's Rings 4. Conversion of galvanometer into ammeter and Voltmeter	5 x3 h 100% (5X 20%)		

5. Dispersive power of a prism -Spectrometer

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- 1. A text book of Engineering Physics, M.N. Avadhanulu and P.G. Kshirsagar, S. Chand and Company, New Delhi (2009).
- 2. Engineering Physics, R.K. Gaur and S.L. Gupta, Dhanpat Rai Publications (P) Ltd., 8th edn., New Delhi (2001).
- 3. Laser Fundamentals, William T. Silfvast, 2nd edn, Cambridge University press, New York (2004)
- 4. Fundamentals of Physics, 6th Edition, D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, New York (2001).
- 5. Introduction to solid state physics,7th Edn, Charls Kittel, Wiley, Delhi (2007)
- 6. Practical Physics, R.K. Shukla, Anchal Srivastava, New age international (2011)
- 7. B.Sc. Practical Physics, C.L Arora, S. Chand &Co. (2012)
- 8. http://www.doitpoms.ac.uk/
- 9. http://vlab.co.in/index.php

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Performance in the assessment methods
- > Questionnaire about the effectiveness of the delivery method, topics and the knowledge gained.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

Attendance:

- > 75% attendance is mandatory to appear in the final semester examination.
- ➤ Student(s) having *less than 75% attendance* will *NOT* be *allowed* in semester examination and will be given *V grade*. Further, the student(s) *should REDO* the course and can get a grade based on the performance in all the assessments.
- Failing in fulfilling the minimum requirements in REDOing would lead the student(s) to opt again either for *REDO*ing or *Formative Assessment*.

Minimum mark to pass the course:

Each student should score a minimum of, (i) either $\frac{class\ average}{2}$ or (ii) 35%, but whichever is higher to pass in the course.

Plagiarism, academic honesty & indiscipline etc.:

- Those who involved in malpractice such as copying, plagiarism shall have to REDO the course.
- ➤ Those who are absent for any of the assessment tests on genuine grounds will be given an opportunity for a *retest* only.
- For *retest*, the student(s) should get prior permission from concerned faculty member (course teacher), Course coordinators and Head of the Department of Physics. The retest will be covering **Lasers**, **Fiber Optics**, **Acoustics** & **Crystallography** and conducted before the end semester examination.
- The marks for laboratory sessions shall be awarded based on independent experiments, observation, accuracy, skill, punctuality, neatness, etc.
- Those who fail in the course can appear for the supplementary exam. The laboratory and internal marks shall be considered till his/her B.Tech. programme duration.
- \triangleright The total mark for the evaluation of the course is 100 (for theory 66.66% (2/3) and laboratory practical 33.33% (1/3)).
- Any misbehavior, indiscipline in the classroom/laboratory/exam hall will be dealt with seriously. In the worst case, the final resolution will be taken by the departmental disciplinary committee.

	ADDITIONAL COURSE INFORMATION					
The lecture materials such as PPT presentation / notes, problems and video lectures will be available						
The state of	the course faculty. The individual faculty members can be contacted through phone or in person for					
	further discussions and clarifications on a mutually convenient time.					
	FOR SENATE'S CONSIDERATION					
A 2015 AUG	· · · · · · · · · · · · · · · · · · ·					
	1,0					
	Course Faculty CC-Chairperson HOD W. Joyalah-8h					
	Course racuity/// CC-Chair berson					