| | URSE OUTC | | | | |--|--|--|--|--| | Course Outcomes | | | Aligned Programme Outcomes (PO) | | | 1. U
b
2. A
u
3. Id
4. A
5. Do | ased on lasers ppreciate various sed in enginee entify the caus nalyse the crysecide on suitable plications. | le to: y modern devices and technologies and optical fibres. sus material properties which are ring applications and devices. e of reverberations in buildings. tal structure of materials. le materials for engineering HING AND LEARNING ACTIVITIES | Obtain in-depth knowl important Physics con Carry out independent interdisciplinary areas Interact with professio areas. Communicate ideas an technologies. | ledge on
cepts.
research work ir
nals in related | | S.N | Week | Topic | | 37.1.0 | | 0. | · · · · · | Торіс | | Mode of | | 1 | 2 nd - 4th | th Lasers | | Delivery
Lectures, | | | week of
August | Introduction to Laser-characteristics of Lasers-Spontaneous and stimulated emissions – Einstein's coefficients – population inversion and lasing action – laser systems: Ruby laser, He-Ne Laser, semiconductor laser-applications:—Holography- CD-drive – industrial and medical applications | | Power point presentations, Class room discussions. | | 2 | 1 st - 3 rd
week of
September | Fiber Optics Fermat's principle and Snell's law-optical fiber – principle and construction – acceptance cone - numerical aperture - V-Number - types of fibers, Fabrication: Double Crucible Technique, Vapour phase Oxidation Process – fiber optic communication principle – fiber optic sensors-other applications of optical fibers. | | Lectures,
Power point
presentations,
Class room
discussions. | | 3 | 4 th week of
September
-2 nd week
of October | Acoustics Characteristics of musical sound – loudness – Weber-Fechner law – decibel – absorption coefficient – reverberation – reverberation time – Sabine's formula – acoustics of buildings – ultrasonics – production of ultrasonics using piezoelectric method – magnetostriction method- applications. | | Lectures,
Power point
presentations,
Class room
discussions. | | 1 | 3 rd week of
October -
1 st week of
November | Crystallography Crystalline and amorphous solids – lattice and unit cell – seven crystal system and Bravais lattices – symmetry operation – Miller indices – atomic radius – coordination number – packing factor calculation for sc, bcc, fcc – Bragg's law of X-ray diffraction –Laue Method-powder crystal method. | | Lectures,
Power point
presentations,
Class room
discussions. | | 5 | 2 nd and 3 rd
week of
November | Magnetic materials: Definition of terms – classification of magnetic materials and properties – Domain theory of ferromagnetism- hard and soft magnetic materials – applications. Conductors: classical | | Lectures,
Power point
presentations,
Class room
discussions. |