NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN

COURSE OUTLINE					
Course Title	Mathematics-I				
Course Code	MAIR11	No. of Credits	4		
Department	ICE (sections A & B)	Faculty	Dr. V. Kumaran		
Pre-requisites Course Code	10 + 2 Mathematics				
Course Coordinator(s) (if, applicable)	-				
Other Course Teacher(s)/Tutor(s) E-mail	kumaran@nitt.edu	Telephone No.	0431-2503670		
Course Type	Core course	Elective co	urse		
COURSE OVERVIEW					
The course develops the basic concepts of matrices, convergence of series, partial differentiation & optimization of funtions of several variables and multiple integrals to apply them in various academic/industrial applications.					
COURSE OBJECTIVES					
Students will be able to learn the concepts of matrices, convergence of series, partial differentiation & optimization of funtions of several variables, multiple integrals and will be able to apply them in the relevant academic/industrial applications.					
COURSE OUTCOMES (CO)					
Course Outcomes				Aligne d Progr amme Outco mes (PO)	
The students would have learnt the concepts and applications of the following: 1. Matrices 2. Series convergence 3. Partial differentiation & Optimization of functions 4. Multiple integrals				PO's 1 & 5 (in attend ance book)	

COURSE TEACHING AND LEARNING ACTIVITIES					
S.No.	Week	Торіс	Delev ery		
			Mode		
Unit-I	1 st Week	Introduction to matrices, Eigen value problem, Properties.	Chalk		
16/8-3/9	2 nd Week	Diagonalization, Cayley-Hamilton Theorem–applications.	and		
(10-12 hrs)	3 rd Week	Quadratic form – types – Orthogonal reduction.	Talk		
Unit-II	4 th Week	Introduction to sequences, Infinite series.			
4/9-24/9	5 th Week	Convergence Tests for positive & Alternating series.			
(10-12 hrs)	6 th Week	Absolute & Conditional Convergence, Riemann theorem.			
Unit-III	7 th Week	Partial derivatives, Transformation of variables, Jacobian.			
25/9-22/10	8 th Week	Properties of Jacobian, Taylor series.			
(10-12 hrs)	9 th Week	Maxima and Minima of function of two variables.			
Unit-IV	10 th Week	Double integral, Change of order, Change of coordinates.			
23/10-12/11	11 th week	Area & volume in different coordinate systems.			
(10-12 hrs)	12 th week	Triple integral in different coordinate systems.			
13/11-25/11	13 th week	Revision/Advanced Topics			
(6-8 hrs)	14 th week	Revision/Advanced topics			

COURSE ASSESSMENT METHODS

S No					
5.NO.	Assessment	Week/Dale	Duration	70	
	wode			weign	
				tage	
01.	Test-I	26-09-2016*	1 hour	20%	
02.	Test-II	15-11-2016*	1 hour	20%	
03.	Group –ass- ignments - 4	3 rd ,6 th , 9 th , 12 th weeks	Next 1 Week	12%	
04.	Individual Assignment	12 th Week	1 week	8%	
05.	Re-Test	22-11-2016*			
06.	Semester Exam	02-12-2016*	3 hours	40%	
07.	Reassessm ent Exam				
		*If holiday then next day			

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc

1. Kreyszig, E., Advanced Engineering Mathematics, 10th edn, John Wiley Sons, 2010.

2. Grewal, B.S., Higher Engineering Mathematics, 43rd edition, Khanna Publications, Delhi.

- 3. Greenberg, M.D. Advanced Engineering Mathematics, Second Edition, Pearson Edu. Inc. 1998
 - 4. Strauss. M.J, Bradley, G.L. and Smith, K.J. Calculus, 3rd Edition, Prentice Hall, 2002.

-3-

COURSE EXIT SURVEY

Twice in a semester students can give oral (recorded by student)/anonymous written feedback about the content, content delivery and valuation.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. Attendance: Students who are absent for classes with valid reason must inform immediately with proof. Otherwise it (ML-OD-etc.,) will not be considered.
- 2. Absent for tests: If reason is genuine and informed his inability to write the test in time with a written request, the student may be permitted for re-test.
- 3. If attendance in class room (excluding ML, OD, etc.,) is < 60%, "F" grade will be assigned and they have to pass the course through formative assessment only.
- 4. Permitted to write Semester Exam if
 - a) attendance in class room (excluding ML, OD, etc.,) is >= 60% and
 - b) attendance ((classes attended)/(classes conducted-ML-OD)) is >= 75%.
- 5. If they fail in semester exam, reassessment exam will be conducted after evaluation of papers. If they fail in reassessment exam also, "F" grade will be assigned and they have to pass the course through formative assessment only.
- 6. If found copying in any form in tests/semester exam will get zero marks.

ADDITIONAL COURSE INFORMATION

The faculty is available for consultation during working hours at his room. Queries may also be emailed to the faculty directly at kumaran@nitt.edu

FOR SENATE'S CONSIDERATION

Course Faculty:Dr.V.Kumaran

Course Code	MAIR11	
Course Title	MATHEMATICS- I	
Number of Credits	(3L+1T=)4	
Prerequisites	-	
Course Type	General Institute requirements	

Learning Objectives: Objective of the course is to

- 1. determine canonical form of given quadratic form.
- 2. discuss the convergence of infinite series.
- 3. analyze and discuss the extrema of the functions of several variables.
- 4. evaluate the multiple integrals and apply in solving problems.

Characteristic equation of a matrix –Eigen values and Eigen vectors – Properties of Eigen values – Diagonalization of matrix – Cayley-Hamilton Theorem (without proof) verification – Finding Inverse and Power of a matrix using it – Quadratic form – Definite and indefinite forms – Orthogonal reduction of quadratic form to canonical form.

Introduction to sequences, Infinite series-Convergence Tests for positive term series – Comparison, integral test, Root, Ratio test, Raabe's tests, logarithmic test - Alternating series – Leibnitz's rule – Absolute and Conditional Convergence. Riemann rearrangement theorem (without proof).

Functions of several variables – Partial derivatives and Transformation of variables – Jacobian and its Properties- Taylor series-Maxima and Minima of function of two variables.

Double integral – Changing the order of Integration – Change of variables from Cartesian to Polar Coordinates – Area using double integral in Cartesian and Polar Coordinates – Triple integral – Change of Variables from Cartesian to Spherical and Cylindrical Coordinates – Volume using double and triple integrals.

Learning Outcomes:

After the completion of the course, students would be able to

- 1. compute eigenvalues and eigenvectors of the given matrix.
- 2. transform given quadratic form into canonical form.
- 3. discuss the convergence of infinite series by applying various test.
- 4. compute partial derivatives of function of several variables
- 5. write Taylor's series for functions with two variables.
- 6. evaluate multiple integral and its applications in finding area, volume.

Reference Books

- 1. Kreyszig, E., Advanced Engineering Mathematics, 10th edn, John Wiley Sons, 2010.
- 2. Grewal, B.S., Higher Engineering Mathematics, 43rd edition, Khanna Publications, Delhi.

12 0

- 3. Greenberg, M.D. Advanced Engineering Mathematics, Second Edition, Pearson Education Inc. 1998.
- 4. Strauss. M.J, Bradley, G.L. and Smith, K.J. Calculus, 3rd Edition, Prentice Hall, 2002.