

Department of Chemistry

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEM	PLATE		
Course Title	Chemistry I		
Course Code	CHIR 11	No. of Credits	3 (Theory -2 + Lab -1)
Department	Chemistry	Faculty	All faculty members of the Department
Pre-requisites Course Code	NA		
Course Coordinator(s)	Dr. S. Anandan (Theor	y)	
(if, applicable)	Dr. S. Velmathi (Lab)		
E-mail	sanand@nitt.edu	Telephone	2503639
	velmathis@nitt.edu	No.	2503640
Course Type	Core course	Elective	course
COURSE OVERVIEW			

This course is common to all the I year B.Tech. students. This 3 credit course is a combination of theory (2 credit) and practicals (1 credit). Two theory classes will be conducted per week and one lab class (3 h) will be conducted in alternate week.

COURSE OBJECTIVE

To introduce water chemistry, bonding concepts, entropy, fuels and lubricants to the I year B.Tech. students.

COURSE OUTCOMES (CO)

Students will learn about quality of water, bonding theories, entropy change for various processes and basic aspects of fuels and lubricants.

COURS	SE TEACHING AND	LEARNING ACTIVITIES	
S.No.	Week	Торіс	Mode of Delivery
1	II week of Aug	Unit-I Sources, hard & soft water, estimation of hardness	C&T, PPT
2	III week of Aug	Processes for softening of water, boiler feed water	C&T, PPT
3	IV week of Aug	Internal treatment methods, specifications for drinking water, various standards	C&T, PPT
4	I week of Sep	Treatment of water <u>Unit-II</u> Bonding in metals	C&T, PPT
5	II week of Sep	Theory and properties, alloy and its types	C&T, PPT

6	III week of Sep	Coordinate bond,	electron counting methods	C&T, PPT
7	IV week of Sep	Crystal field theor		,
8	I week of Oct	Unit-III	R theories, consequences of	C&T, PPT
9	II week of Oct	Valence bond the	eory	C&T, PPT
10	III week of Oct	Various intermole strength, consequ	ecular interactions, relative	C&T, PPT
11	IV week of Oct	Unit-IV Entropy changes	for various processes	C&T, PPT
12	I week of Nov	Work and free en Gibbs free energy	ergy functions, Helmholtz and y functions	C&T, PPT
13	II week of Nov		Gibbs-Duhem and Clapeyron- ns & their applications	C&T, PPT
14	III week of Nov	Van't Hoff isother <u>Unit-V</u> Classification of f		C&T, PPT
15	IV week of Nov	Coal, calorific val requirement for c	ue, theoretical oxygen ombustion	C&T, PPT
16	I week of Dec	Analysis of coal, i analysis	metallurigical coke, flue gas	C&T, PPT
17	II week of Dec	lubricants, additiv	ation, characteristics of es, solid lubricants	C&T, PPT
	E ASSESSMENT MET			1
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
Theory				
1	Quiz/seminar/G.D./ assignment	I week of Sep	Depends on the activity	5
2	Test I	IV week of Sep	50 minutes	20
3	Quiz/seminar/G.D./ assignment	III week of Oct	Depends on the activity	5
4	Test II	III week of Nov	50 minutes	20
5	End semester		3 hours	50
Practic	al			
6	Regular class experiments	All practical classes	3 hours per experiment	100
	(66.7) + Practical (33.	<u>, , , , , , , , , , , , , , , , , , , </u>		
ESSEN	TIAL READINGS : Tex	ktbooks, reference	e books Website addresses, jo	urnals, etc
2012			Dhanpat Rai Publishing Compar ford University Press, 2002	ny, New Delhi

Physical Chemistry, P. Atkins & J.D. Paula, Oxford University Press, 2002
Modern Inorganic Chemistry, R.D. Madan, S. Chand & Company Ltd., New Delhi, 2012
Engineering Chemistry, M.J. Shultz, Cengage Learning, New Delhi, 2007

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

1. Feedback from students during class committee meetings.

2. Anonymous feedback through questionnaire (as followed previously).

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

1. Test I and II will be conducted in regular class.

- 2. The question paper for end semester examination will be set by the respective teacher.
- 3. Each experiment will be evaluated for 20 marks.

4. There will be no semester examination for practical.

5. One extra class will be conducted for those who missed any experiment due to ill health or OD reasons.

6. 75% attendance is compulsory for writing the end semester exam.

ADDITIONAL COURSE INFORMATION

The respective faculty will be available for consultation at times as per the intimation by the faculty.

Coordinator CC-Chairperson HOD
