DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN – PART I						
Course Title	Power Conversion Techniques					
Course Code	EE603 No. of Credits 3					
Course Code of Pre- requisite subject(s)	-					
Session	July-2021	Section (if, applicable)	M.Tech-Power Systems			
Name of Faculty	Dr.C.Nagamani	Department	EEE			
Email	cnmani@nitt.edu		04312503254/ 04312504555			
Name of Course Coordinator(s) (if, applicable)	NA					
Course Type	\checkmark Core course					
Syllabus (approved in BoS)						

DC-DC converters - Buck converter, boost converter, buck - boost converter, averaged circuit modeling, input-output equations, ripple calculations, filter design, case studies DC-AC inverters -Single phase VSI, Three phase VSI, Single phase CSI, Three phase CSI, voltage control and harmonic reduction in inverters-standard PWM techniques, case studies AC-DC converters- Uncontrolled rectifiers, single and three phase fully controlled and semi controlled converters, continuous current conduction, discontinuous current conduction, Reactive compensation, Harmonic compensation techniques, case studies AC-AC converters-single phase and three phase circuits employing Phase angle control, on-off control. AC choppers, case studies Loss calculations and thermal management: Device models for loss calculations, ratings, safe operating areas, data sheets, forward conduction loss, switching losses, heat sink design, snubber design drive and protection circuits, commutation circuits, Soft switching COURSE OBJECTIVES

To present the concepts of typical power converter circuit topologies, operation and control. Anaysis, mathematical modeling, design and control aspects will be discussed. Applications of power converters will be introduced. Strong mathematics background and circuit analysis techniques are essential.

COURSE OUTCOMES (CO)

Co	ourse Outcomes	Aligned Programme Outcomes (PO)					
1.	be able to understand and explain the operation of power converter circuits	COs/ POS	CO1	CO2	CO3	CO4	
2.	be able to derive the mathematical relations for typical power converter circuits	$\frac{1}{2}$	H M L	M H L	H M L	M H L	
3.	identify the devices, their arrangements, and switching patterns, required in a given input-output scenario	4 5 6 7	L M M L	L M M L	M M L	L M M L	

4. be able to analyse/ compare suitable control methods for a given the power electronic circuit

	8	Μ	Μ	Μ	Μ	
	9	L	L	L	L	
	10	М	М	М	М	
	11	М	М	М	М	
	12	Н	М	Н	М	
	13	Н	Н	Н	Н	
	14	М	Н	М	Н	

5. be able to use modern computer simulation tools for power converter circuits

COURSE PLAN – PART II

COURSE OVERVIEW

The aim of this course is to present the concepts of typical power electronic circuits: topologies and control. Converter analysis, modeling, design and control of converters will be presented as relevant to different applications. This course also aims to apply the mathematical skills to a number of practical problems. Knowledge on the power semiconductor devices, electronic circuits, circuit theory and mathematics, such as Fourier series analysis and differential equations is essential.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Conta ct Hours	Торіс	Mode of Delivery
1.	Week 1 (2 contact hours)	Introduction to power electronics, power devices, and converter topologies. Review of terminologies used power conversion techniques	On line mode
2.	Week 1, 2 & 3 & 4 (8 contact hours)	DC-DC converters; Buck converter, boost converter; buck - boost converter analysis; ripple calculations, filter design	On line mode
3.	Weeks 4, 5 and 6 (8 contact hours)	On line mode	
		Written test (on line)	
4.	Week 7, 8, 9 and 10 (9 contact hours)	AC-DC converters- Uncontrolled rectifiers, single and three phase fully controlled and semi controlled converters, continuous current conduction, discontinuous current conduction, Reactive compensation, Harmonic compensation techniques, case studies	On line mode
5.	Weeks 10 - 12	AC-AC converters-single phase and three phase circuits employing Phase angle control, on-off control. AC choppers, case studies	On line mode
	(8 contact hours)	Assessment -2	Written test (on line)
6.	Weeks 13 - 15 (8 contact	Loss calculations and thermal management: Device models for loss calculations, ratings,	On line

7.		carrie	Written test d out during the			
		•	hall range from 4 t	-		
S.No.	Mode of A	Assessment	Week/Date	Duration	n	% Weightage
1	Assessment – 1 (written examination covering units-1&2)		7 th week	60 minutes		25
2	Assessment – 2 (written examination covering units-3&4)		12 th week	60 minutes		25
3		sment - 3 ent/Seminar/term	Work will be carried out along with the course		with	20
CPA*	Compensation Assessment (written examination covering units-1 to 4)		15 th week	60 minutes		25
4	Final As (written exam	sment - 4 ssessment nination covering syllabus)	16 th week	120 minut	es	30
*mandatory; refer to guidelines on page 4						

ESSENTIAL READINGS

Reference Books:

1. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, 3rd Edition, 2002.

2. Rashid M.H., 'Power Electronics Circuits, Devices and Applications', Prentice Hall India, 3rd Edition 2004.

3. Singh M.D., Khanchandani K. B., 'Power Electronics', Tata McGraw-Hill, 2nd Edition, 2008.

4. Umanand L., 'Power Electronics: Essentials & Applications', Wiley India Pvt. Ltd., 2009.

5. Issa Batarseh, "Power Electronic circuits", Wiley India Pvt Ltd, 2014

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Apart from the formal feedback (arranged by academic office) at the end of the course, informal and objective feedback is encouraged along the course work for improving the teaching – learning process.

COURSE POLICY (preferred mode of correspondence with students, policy on a attendance, compensation assessment, academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone)

All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be through webmail.

ATTENDANCE

As per the uniform policy specified by the Academic office, NIT, Tiruchirappalli

COMPENSATION ASSESSMENT

- 1. Attending all the assessments (Assessment 1, 2, 3 and 4) is MANDATORY for every student.
- If any student is not able to attend Assessment-1 or Assessment-2 due to genuine reasons, he/ she can seek permission to write the Compensation Assessment (CPA) with 25% weightage (25 marks).
- 3. In any case, Compensation Assessment will not be offered as an improvement test.

ACADEMIC HONESTY & PLAGIARISM

As	per the	policy	specified b	y the	Academic	office,	NIT,	Tiruchirappalli
		P		· · · · · · · ·		,	,	

ADDITIONAL INFORMATION

FOR APPROVAL

C. Nagamani Course Faculty

CC-Chairperson Dr. S. Kayalvizhi

Date: 23.9.2021

HOD Approved by HoD