NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

<u>COURSE PLAN – PART I</u>					
Program & Specialization	B.Tech - Electrical and Electronics Engineering				
Course Title	Control Systems				
Course Code	EEPC 20		No. of Credits	04	
Department	Electrical and Electronics Engineering		Faculty	Dr. Vivek Mohan	
Session:	July 2021		Section:	3 rd year EEE-B	
Pre-requisite Course	MAIR 32				
Course Coordinator					
E-mail	vivekmohan@nitt.edu	Telephone No.		8113093716	
Course Type	✓ Core course	Elective course		Laboratory course	

SYLLABUS (APPROVED BY BOS)

Modelling of physical systems: Electrical systems - Electromechanical systems - Mechanical systems.

Time domain analysis: Time-domain specifications - Generalized error series – various test signals and its importance- Routh-Hurwitz stability criterion.

Root Locus Technique: Definitions - Root locus diagram - Rules to construct root loci - Effect of polezero additions on the root loci.

Frequency domain analysis: Bode plot - Polar plot - Nyquist plot - phase-margin - gain margin – Nyquist stability criterion.

Controller design: Design of P, PI, PID, lag, lead, lead-lag compensator design.

ESSENTIAL READINGS : Textbooks, reference books, Website addresses, journals, etc

- 1) Katsuhiko Ogata, 'Modern Control Engineering', Pearson Education
- 2) Nagrath and Gopal, 'Control Systems Engineering', New Age International
- 3) Benjamin C Kuo and Farid Golnaraghi, 'Automatic Control Systems', John Wiley and Sons
- 4) M. Gopal, 'Control Systems', Tata McGrawHill

COURSE OBJECTIVES

To equip students with fundamentals of control systems

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)					
The students will be able to 1)	COs/POs	Course Outcomes (COs)				
understand the concepts of closed loop control systems 2) analyze the	Program Outcomes (POs)		1	2	3	4
		1	Μ	Н	L	Μ
stability of closed loop control		2	Μ	Н	L	Μ
systems 3) apply the techniques to any		3	М	Н	L	Μ
electrical systems 4) design the		4	Μ	Н	L	Μ
classical controllers for electrical		5	Μ	Н	L	Μ
systems.		6	Μ	Η	L	Μ
		7	Μ	Н	L	Μ
		8	Μ	Н	L	Μ
		9	Μ	Н	L	M
		10	Μ	Н	L	Μ
		11	Μ	H	L	M
		12	Μ	H	L	M
		13	Μ	H	L	M
		14	Μ	H	L	M
				-	_	
COURSE PLAN – PART II						

COURSE OVERVIEW

This is a basic course on control systems involving time domain, frequency domain and stability analyses of systems along with their controller design.

COURSE TEACHING AND LEARNING ACTIVITIES

S. No.	Week	Торіс	Mode of Delivery
1.	1 st Week of August (4hrs)	Introduction to Control Systems with Examples	Online
2.	4 th Week of August (4hrs)	Modeling of Physical Systems (Electrical, Mechanical, Thermal)	Online
3.	1 st Week of September (4hrs)	Intro to Time Domain Analysis, Generalized Error Series and Test Signals	Online

4.	2 nd Week of September (3hrs)	Routh Hurwitz Stability Criterion+ 1st Quiz		Online
5.	3 rd Week of September (4hrs)	Root Locus Technique		Online
6.	4 th Week of September (3hrs)	Intro to Frequency Domain Analysis, Bode Plot		Online
7.	1 st Week of October (1hr)	Polar and Nyquist Plot		Online
8.	2 nd Week of October (4hrs)	Revision of Frequency Domain Analysis + 2 nd Quiz		Online
9.	3 rd Week of October (3hrs)	Intro to Controller Design and PI		Online
10.	4 th Week of October (4hrs)	PI and PID continued		Online
11.	5 th Week of October (4hrs)	Compensator Designs		Online
12.	1 st Week of November (3hrs)	Compensator Designs Continued – Lead-Lag		Online
13.	2 nd Week of November (4hrs)	Numerical Solving/Tutorial/Quiz		Online
14.	3 rd Week of November (3hrs)	Numerical Solving/Tutorial/Quiz		Online
15.	4 th Week of November (2hrs)	Compensation Test		Online
16.	1 st Week of December (3hrs)	Revision		Online
17.	2 nd Week of December (2hrs)	End Sem Exam		Online
COURSE ASSESSMENT METHODS				
S. No.	Mode of Assessment	t Week/Date	Duration	% Weightage

1.	Quiz-1 (1 st and 2 nd Modules)	2 nd week of September	1 hour	20%
2.	Quiz-2 (3 rd and 4 th Modules)	2 nd /3 rd week of October	1 hour	20%
3.	Viva	1 st week of October onwards	30 minutes	20%
4.	Assignment	-	-	10%
5.	Compensation test (Full Portions)	4 th Week of November	1 hour	20%
6.	End Semester Examination	2 nd week of December	2 hours	30%

COURSE EXIT SURVEY

- 1. Students feedback through class committee meetings
- 2. Feedback from students on the course outcomes shall be obtained at the end of the course

COURSE POLICY

COMPENSATION ASSESSMENT: Attending all the assessments (1, 2, 3, & 5) are mandatory for every student. If any student fails to attend the assessment 1 due to genuine reason like medical emergency, the student may be permitted to appear the compensation assessment (CPA) on submission of appropriate documents as proof. The compensation assessment (CPA) will cover full syllabus. 80% of the marks attained in CPA will only be considered for final grading. CPA is not considered as an improvement test.

ATTENDANCE POLICY: All the students are expected to attend all the contact hours. Students should maintain 75% attendance by the end of the course to attend the end semester examination.

ACADEMIC HONESTY & PLAGIARISM: In case of any student found guilty indulging in any malpractice, the student will be awarded no marks in that assessment.

MODE OF COMMUNICATION: The study materials will be given through email/whatsapp group of class representative. For correspondence, please contact through email <u>vivekmohan@nitt.edu</u>.

FOR APPROVAL

linerasian

[Dr. Vivek Mohan, AP/EEE] Course Faculty

Course Coordinator

HoD (Dept. of EEE)