

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE PLAN – PART I								
Name of the programme and specialization	B.Tech- Electrical and Electronics Engineering							
Course Title	DESIGN WITH PIC MICRO	DESIGN WITH PIC MICRO-CONTROLLERS						
Course Code	EEPE19	EEPE19 No. of 3 Credits						
Course Code of Pre- requisite subject(s)		EEPC15						
Session	January 2021	Section	3 rd and 4 th year A and B					
Name of Faculty	Dr. Sreenu Sreekumar	Department	EEE					
Official Email	sreenu@nitt.edu	Telephone No.	8079	033176	6			
Name of Course Coordinator(s) (if, applicable)								
Official E-mail		Telephone N	0.					
Course Type (please tick appropriately)	✓ Elec	✓ Elective course						
	·							
Syllabus (approved in	BoS)							
Introduction to PIC microcontrollers - PIC 16F876 microcontroller – device overview-pin diagrams- memory organization								
Special Function Registers - I/O ports - Timers – Capture/Compare/PWM modules (CCP) – Analog to digital converter module - selection – reset – interrupts - watchdog timer								
Instruction set - instruction description – PIC16F876 assembly language programming – simple programs								
Introduction to MPLABIDE and PICSTART plus – Device Programming using MPLAB and PICSTART plus								
Assembly language programming for – Zero crossing detectors - square wave generation –pulse generation for typical applications - ADC program – hardware demonstration.								
COURSE OBJECTIVES								
To understand the internal structure and operation of PIC16F876 microcontroller, assembly language								
annlications								
MAPPING OF COs with Pos								
Course Outcomes (PO)					S			
Upon completion of this co	ourse, students will		PO	CO ₁	CO ₂	CO ₃	CO ₄	
Understand the architecture of PIC 16F876 microcontroller and				L H	M H	H H	H H	

its instruction set

- Be able to develop assembly language program
- Be able to develop the program using MPLAB and download it to the microcontroller chip using suitable developer
- Be able to design and generate pulses for typical applications

3	L	L	М	L
4	М	М	М	М
5	L	Н	Н	Н
6	L	М	L	М
7	М	Н	L	L
8	Н	Н	L	Н
9	Н	М	Н	Н
10	Н	Н	Н	Н
11	L	М	Н	Н
12	L	Н	L	L
13	L	Н	Н	L
14	М	Н	М	Н

COURSE PLAN – PART II

COURSE OVERVIEW

PIC microcontrollers (Programmable Interface Controllers), are electronic circuits that can be programmed to carry out a vast range of tasks. They can be programmed to be timers or to control a production line and much more. They are found in most electronic devices such as alarm systems, computer control systems, phones, in fact almost any electronic device. The course aims to enable students to develop assembly language program, develop the program using MPLAB and download it to the microcontroller chip using suitable developer and design and generate pulses for typical applications.

COURSE TEACHING, LAB EXPERIMENTS AND LEARNING ACTIVITIES

S.No	Week/Contact Hours	Торіс	Mode of Delivery
1.	Week 1 18-22 January 2021 (3 Contact hour)	Introduction to PIC microcontrollers- PIC 16F876 microcontroller – device overview	Online
2.	Week 2 25– 29 January 2021 (2 Contact hours)	Pin diagrams- memory organization	Online
3.	Week 3 01 - 05 February 2021 (3 Contact hours)	Special Function Registers	Online
4.	Week 4 08 - 12 February 2021 (3 Contact hour)	I/O ports - Timers	Online
5.	Week 5 15 - 19 February 2021 (3 Contact hours)	Capture/Compare/PWM modules (CCP)	Online
6.	Week 6 22 – 26 February 2021 (3 Contact hours)	Analog to digital converter module - selection – reset – interrupts - watchdog timer	Online
7.	Week 7 01– 05 March 2021 (3 Contact hours)		Online

8.	Week 8 08 - 12 March 2021 (3 Contact hour)	Instru descr	uction set - inst ription	ruction		Online
9.	Week 9 15 - 19 March 2021 (3 Contact hour)	PIC16F876 assembly language programming – simple programs				Online
10.	Week 10 22- 26 March 2021 (3 Contact hour)	Introduction to MPLABIDE and C PICSTART plus			Online	
11.	Week 11 30 March - 02 April 2021 (3 Contact hour)	Device Programming using MPLAB and PICSTART plus				Online
12.	Week 12 05 - 09 April 2021 (3 Contact hour)	Device Programming using MPLAB and PICSTART plus				Online
13.	Week 13 12 - 16 April 2021 (3 Contact hour)	Assembly language programming for – Zero crossing detectors		Online		
14.	Week 14 19 - 23 April 2021 (3 Contact hour)	Assembly language programming for square wave generation		Online		
15.	Week 15 26 - 30 April 2021 (3 Contact hour)	Assembly language programming for pulse generation for typical applications			Online	
16.	Week 16 03 – 07 May 2021 (3 Contact hour)	Assembly language programming for ADC program			Online	
17.	Week 18 10 - 13 May 2021 (3 Contact hour)	Hardware demonstration				
18.	Week 18 17 - 21 May 2021	Final assessment				
COURSE ASSESSMENT METHODS						
S.No	Mode of Assessme	ssment Week Du		Dui	ration	% Weightage
• 1	Class Test-1		Week 6 22 – 26 February 60 mir 2021		ninutes 15	

2	Class Test-2	Week 10 22- 26 March 2021	60 minutes	15
3	Surprise test/ Assignments/Seminar/Hom e works/Other leraning activities	Continuous evaluation (Throughout the semester)		20
4	Mini Project	Continuous evaluation (Throughout the semester)		20
4	Compensation Assessment	Week 16 03 – 07 May 2021	60 minutes	15
5	Final Assessment	Week 18 17 - 21 May 2021	120 minutes	30

COURSE EXIT SURVEY

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire (Mid of the semester & End of the semester)
- End semester feedback on course outcomes

COURSE POLICY (including compensation assessment to be specified)

- 1. Attending all the assessments mandatory for every student
- 2. One compensation assessment (CPA) will be conducted for those students who are being physically absent for the assessment 1 and/or 2, only for the valid reason.
- 3. At any case CPA will not be considered as an improvement test.
- 4. Absolute/Relative grading will be adopted for the course.

<u>ATTENDANCE POLICY</u> (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student,

both students get the same penalty of zero mark.

- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, IF ANY

FOR APPROVAL		
\sim		
	121	
	101/2	
Or COMP.	a Varta 2	
	Silver	
SREENU SREEKUMAR		
18/01/2021		Approved by HOD
10/01/2021	Dr. S. Kayalvizhi	11 7
Course Faculty	CC- Chairperson	HOD

<u>Guidelines</u>

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2018	2017	2016 2015		
35% or (Class average/2)(Peak/3) or (Class Averagewhichever is greater.whichever is lower		ass Average/2) wer	40%	

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.