DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIPLICHIPAPPALLI

NATIONAL IN	STITUTE OF TECHNOL	OGY, TIRUCHI	RAPPALLI	
	COURSE PLAN -	PARTI		
Course Title	Principles of VLSI Design	WOOD ACTION OF		
Course Code	EE 688	No. of Credits	03	
Course Code of Pre- requisite subject(s)		d temen simula	Fow I L. T.	
Session	July/ Jan. 2020	Section	A/B	
Name of Faculty	Dr. S. Moorthi	Department	EEE	
Email	drmoorthi.vlsi@gmail.cor			
Course Type	Core course	Elective cour	se	
Syllabus (approved in				
and second order effe Latch up, driver circui Hardware Description circuits using VHDL - HDL.	languages: VHDL- Modelir Overview of Verilog HDL -	brication of resisting styles – Design Design of simple o	ors and capacitors of simple / complex circuits using Verilo	
ransistor and transmi Memory design. Programmable Device	Implementation of logic ci ission gates, design of con es: Simple and Complex Pro	nbinational and se ogrammable logic	quential circuits – devices (SPLD and	
Case study: A CPLD a	mmable Gate Arrays (FPG/ and a 10 million gates type - Design flow - Programma	of FPGA.		
	for Xilinx and Altera famil			
Reference Books:				
Addison-Wesley, 4 th E 2. M. J. Smith, 'Applica 3. Uyemura, 'Introduct	arris, 'CMOS VLSI Design: dition, 2010. ation Specific Integrated C tion to VLSI Circuits and Sy og HDL Primer', Star Galax	rcuits', Addison V ystems', Wiley, 200	Vesley, 1997. 02.	
COURSE OBJECTIVES	S	Si Isaasii aa		
Enables the student to application.	get exposure on low pow	er electronic syste	em design and its	
COURSE OUTCOMES	(CO)			
Upon completion of th	ne course, the students will	be able to	Aligned Programme Outcomes (PO)	
1. Understand the co	ncepts and characteristics	of MOS devices.	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO9, PO10, PO11, PO12 PO13, PO14.	
2. Model the system	using Hardware Descriptio	n languages.		
3. Design the CMOS	logic circuits and memory	units.		
4. Acquire knowledge	e on PLDs.			
	ibilities of ASIC design.			

COURSE PLAN - PART II

COURSE OVERVIEW

This is a course to teach the design of low power electronic circuits which are mainly required for the development of Digital Controllers for Power Electronic applications.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	s Topic	
1.	1 (two contact hours)	Review of Electronics fundamentals	C&T
2.	1 (one contact hour), 2	Implementation of logic circuits using nMOS and CMOS devices	C&T
3.	3 (two hours)	Pass transistor and transmission gates	(Flip- class)
4.	3 (one hour), 4 (one contact hours)	memory design	C&T
5.	4 (one contact hour)	Objective test	-
6.	4 (one contact hour)	Simple and Complex Programmable logic devices (SPLD and CPLDs)	PPT
7.	5 (two contact hours)	Design problems in PLDs	PPT
8.	6 (one contact hour)	Field Programmable Gate Arrays (FPGAs), Internal components of FPGA.	PPT (Flip- class)
9.	6 (two hours)	Guest Lecture about recent FPGAs from company.	PPT, C&T
10.	8 (two hours)	VHDL- Modeling styles – structural – Behavioral – Dataflow. Circuit Design Test	C&T, PPT
12.	8 (one hour), 9	Design of simple/ complex combinational and sequential circuits using VHDL.	C&T, PPT (Flip- class)
13.	10(two hours)	Data types – Test bench and simulation.	C&T,PPT (Flip- class)
14.	10 (one hour)	Group Assignment: System design using VHDL.	
15.	11, 12 (two hours)	Verilog HDL - Modeling styles – structural – Behavioral – Dataflow - Design of simple/ complex combinational and sequential circuits using Verilog, Testbench and Simulation.	C&T, PPT (partly Flip- class)
16.	12 (one hour)	Simulation Test	
17.	13, 14 (two hours)	Operation characteristics, design equations, models and second order effects of MOS transistors, Fabrication of resistors and capacitors. Latch up, Driver circuits.	
18.	14 (one hour), 15	ASIC: Types of ASICs-Design flow- Programmable ASICs-Programmable ASIC logic cells and interconnect for Xilinx and Altera families.	
19.	16 (one hour)	Compensation Assessment (CPA)	
904.3 01.110	09,009 9,009 1,009	Final Written Exam	

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Objective test	04	One hour	10
2.	Circuit Design test	08	One hour	15
3.	Group Assignment	10	One hour	10
4.	Simulation test	12	One hour	25
	Compensation Assessment (CPA)	16	One hour	15*
5.	Final Written Exam	End of semester	Two hours	40

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Feedback from the students during class committee meetings

Anonymous feedback through questionnaire (Mid of the semester & End of the semester)

End semester feedback on Course Outcomes

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, , academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc)

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail only.
- 2. Queries (if required) to the course teacher shall only be emailed to drmoorthi.vlsi@gmail.com

ATTENDANCE

Attendance will be taken by the faculty in all the contact hours.

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

COMPENSATION ASSESSMENT

- 1. Attending all the assessments are MANDATORY for every student.
- 2. If any student is not able to attend any of the continuous assessments (CAs: 1, 2 only) due to genuine reason, student is permitted to attend the compensation assessment (CPA) with % weightage equal to maximum of the CAs. However, maximum of the % weightage among the assessments for which the student was absent will be considered for computing marks for CA.
- 3. At any case, CPA will not be considered as an improvement test.
- 4. The minimum marks for passing this course and grading pattern will adhere to the regulations of the Institute.

ACADEMIC HONESTY & PLAGIARISM

- 1. Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- 2. Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- 3. The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- 4. The above policy against academic dishonesty shall be applicable for all the programmes.
- 5. Students who honestly producing ORIGINAL and OUTSTANDING WORK will be REWARDED.

ADDITIONAL INFORMATION

The faculty is available for consultation at times as per the intimation given by the faculty.

Queries may also be emailed to the Course Coordinator directly at drmoorthi.vlsi@gmail.com

FOR APPROVAL

Course Faculty Constant

CC-Chairperson a

HOD