NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	COURSE PL	AN - PART	<u>ri</u>		
Course Title	Control Systems Engineering				
Course Code	EEMI12/EEOE18		No. of Credits	03	
Department	Electrical and Electronics Engineering		Faculty	Dr. Shelas Sathyan	
Session:	July 2019		Section:	-	
Pre-requisite Course	-				
Course Coordinator	-		*		
E-mail	shelassathyan@nitt.edu	Telephon	e No.	9561450634	
Course Type	Minor				
SYLLABUS (APPRO	OVED BY BOS)				
various test signals a Technique: Definition	al systems - Time-domai and its importance- Routh ons - Root locus diagram	n-Hurwitz s - Rules to	stability cr construct	iterion - Root Locus root loci - Effect of	

polezero additions on the root loci - Frequency domain analysis: Bode plot - Polar plot Nyquist plot - phase-margin - gain margin - Nyquist stability criterion - Controller design: Design of P, PI, PID, lag, lead, lead-lag compensator design.

ESSENTIAL READINGS: Textbooks, reference books, Website addresses, journals, etc

- 1) Katsuhiko Ogata, 'Modern Control Engineering', Pearson Education
- 2) Nagrath and Gopal, 'Control Systems Engineering', New Age International
- 3) Benjamin C Kuo and Farid Golnaraghi, 'Automatic Control Systems', John Wiley and Sons
- 4) M. Gopal, 'Control Systems', Tata McGrawHill

COURSE OBJECTIVES

To equip students with fundamentals of control systems

COURSE OUTCOMES (CO)

Course Outcomes	Aligned Programme Outcomes (PO)						
The students will be able to 1)	COs/POs	Course Outcomes (COs)					
understand the concepts of closed	20 s		1	2	3	4	

loop control systems 2) analyze the	1	M	Н	L	M	
stability of closed loop control	2	M	Н	L	M	
systems 3) apply the techniques to any	3	M	Н	L	M	
electrical systems 4) design the	4	M	Н	L	M	
classical controllers for electrical	5	M	Н	L	M	
systems.	6	M	Н	L	M	
systems.	7	M	Н	L	M	
	8	M	Н	L	M	
	9	M	Н	L	M	
	10	M	Н	L	M	
	11	M	Н	L	M	
	12	M	Н	L	M	
	13	M	Н	L	M	
	14	M	Н	L	M	

COURSE PLAN - PART II

COURSE OVERVIEW

This is a basic course on control systems involving time domain, frequency domain and stability analyses of systems along with their controller design.

COURSE TEACHING AND LEARNING ACTIVITIES

S. No.	Week	eek Topic		
1.	4 th Week of July (3hrs)	Introduction to Control Systems with Examples	PPT/Chalk & Talk	
2.	5 th Week of July (2hrs) Modeling of Physical Systems		PPT/Chalk & Talk	
3.	1st Week of August (1 hrs)			
4.	2nd Week of August (2hrs) Generalized Error Series and Test Signals & Intro to Time Domain Analysis		PPT/Chalk & Talk	
5.	3rd Week of August (2hrs)	Y Time Damoun Analycic		
6.	4th Week of August (3hrs)	Routh Hurwitz Stability Criterion	PPT/Chalk & Talk	
7.	5th Week of August (3hrs)	Routh Hurwitz Stability Criterion	PPT/Chalk & Talk	

8.	1st Week of Sept (3hrs)	Routh Hurwitz Stability	PPT/Chalk & Talk
9.	5 th Week of August (3hrs)	Root Locus Technique + Class Test-1	PPT/Chalk & Talk
10.	1 st Week of Sept (3hrs)	Root Locus Technique	PPT/Chalk & Talk
11.	2 nd Week of Sept (2hrs)	Intro to Frequency Domain Analysis and Bode Plot	PPT/Chalk & Talk
12.	3 rd Week of Sept (3hrs)	Intro to Frequency Domain Analysis and Bode Plot	PPT/Chalk & Talk
13.	4 th Week of Sept (3hrs)	Polar/Nyquist plot + Class Test-2	PPT/Chalk & Talk
14.	1st Week of October (2hrs)	Polar/Nyquist plot	PPT/Chalk & Talk
15.	2 nd Week of October (2hrs)	Intro to Controller and Compensator Designs	PPT/Chalk & Talk
16.	3 rd Week of October (3hrs)	Compensator Designs Continued – Lead-Lag	PPT/Chalk & Talk
17.	4 th Week of October (3hrs)	Numerical Solving/Tutorial	PPT/Chalk & Talk
18.	5 th Week of October (2hrs)	Numerical Solving/Tutorial + Quiz	PPT/Chalk & Talk
19.	1 nd Week of November (3hrs)	Compensation Test + Assignment	
20.	3rdWeek of November (2hrs)	End Sem Exam	

S. No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Class Test-1	5th Week of August	1 hour	20%
2.	Class Test-2	4th Week of Sept	1 hour	20%
3.	Assignment	1st Week of November		10%
4.	Quiz	5th Week of October	1 hour	10%
5.	End Semester Examination	3rdWeek of November	2 hour	40%
6.	Compensation test (Full Portions)	2 nd Week of November	1 hours	20%

COURSE EXIT SURVEY

- 1. Students feedback through class committee meetings
- 2. Feedback from students on the course outcomes shall be obtained at the end of the course

COURSE POLICY

COMPENSATION ASSESSMENT: Attending all the assessments are mandatory for every student. If any student fails to attend the assessment due to genuine reason like medical emergency, the student may be permitted to appear the compensation assessment (CPA) on submission of appropriate documents as proof. The compensation assessment (CPA) will cover full syllabus. CPA is not considered as an improvement test. Minimum attendance to appear for compensation is 80%.

ATTENDANCE POLICY: All the students are expected to attend all the contact hours. Students should maintain 75% minimum physical attendance by the end of the course to attend the end semester examination. Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' Grade and will have to REDO the course. A maximum of 10% attendance shall be allowed under On Duty (OD) category. OD is allowed only for the students having minimum attendance of 65%.

ACADEMIC HONESTY & PLAGIARISM: In case of any student found guilty indulging in any mal practice, the student will be awarded no marks in that assessment. If found using mobile phones or any other gadgets for mal-practice during the examination, the answer sheet of the student will not be evaluated and will be awarded ZERO marks.

MODE OF COMMUNICATION: The Faculty is available for consultation during the time intimated to the students then and there. For correspondence, please contact shelassathyan@nitt.edu.

FOR APPROVAL

[Dr. Shelas Sathyan, AP/EEE] Course Faculty

Course Coordinator

HoD (Dept. of EEE)