

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE PLAN – PART I						
Name of the programme and specialization B.Tech ELECTRICAL AND ELECTRONICS ENGINEERING						
Course Title	POWER ELECTRONICS					
Course Code	EEPC21 No. of Credits 03					
Course Code of Pre-requisite subject(s)	MAIR32 EEPC10 EEPC11					
Session	January 2019 (if, B applicable)					
Name of Faculty	G. Saravana Ilango	Department	EEE			
Official Email	gsilango@nitt.edu	Telephone No.	0431-2503259			
Name of Course Coordinator(s)						
Official E-mail	Official E-mail Telephone No.					
Course Type Core course Elective course						
		Na Charles Market				
Syllabus (approved	l in BoS)					
Power Semiconductor Devices -power diodes, power transistors, SCRs, TRIAC, GTO, power MOSFETs, IGBTs-Principles of operation, characteristics, ratings, protection and gate drive circuits.						
Controlled rectifiers- single- phase and three-phase- power factor improvement - dual converters.						
DC-DC converters- Buck, Boost, Buck-Boost- with circuit configuration and analysis.						
DC-AC converters- single-phase/three-phase, VSI, CSI, frequency and voltage control.						
AC-AC converters- single/three-phase controllers, phase control, PWM AC voltage controller, Principle of ON-OFF control and cyclo-converters.						
COURSE OBJECTIVES						
This course aims to equip the students with a basic understanding of modern power semiconductor devices, various important topologies of power converter circuits for specific types of applications. The course also equips students with an ability to understand and						

COs / POs (SO 3 4		e outco		
1 2	1 M M	2 H H	3 L	4 L
1 2	1 M M	2 H H	3 L	4 L
(%) 3 3	М	H	L	Ĺ
$\frac{0}{4}$	IVI			-
se 5	NA H	M NA H	NA NA H	N/ N/ H
Ontcomes (POs) Ontcomes (POs) 8	M M	M M	M M	N N
8 9	L	M L	M L	L
10				H
g 12	H	Н	H	Н
13	Н	Н	Н	H
Programme (9 10 11 12	9 L 10 H 11 H 12 H 13 H	9 L L 10 H H 11 H H 12 H H 13 H H	9 L L L 10 H H H 11 H H H 12 H H H 13 H H H

COURSE PLAN - PART II

COURSE OVERVIEW

Power electronics is considered as the technology associated with the conversion, control and conditioning of electric power from its available form to the desired electrical form, by the application of power semiconductor devices. Power Electronics is one of the fastest developing technologies today, having gone through dynamic changes in the last several decades.

Application of Power Electronics ranges switch-mode power supplies and uninterruptible power supplies, process control, factory automation, transportation, energy storage, adjustable speed motor drives, power quality and electric power transmission / distribution. Power electronics is also beginning to play a significant role as electric utilities attempt to utilize the existing transmission network to a higher capacity. Potentially, a large application is in the interconnection of photovoltaic and wind-electric systems to the utility grid. Power Electronics will play a dominant role in the 21st century in industrial and utility applications with increased emphasis on energy saving and efficient control of industrial processes thereby helping to preserve the environment.

Aim of this course is to give the exposure to the students on the analysis, operation and control of typical power electronic converters, namely, dc-dc, dc-ac, ac-dc and ac-ac converters. This course also aims to apply the mathematical skills to a number of practical / design problems.

COURSE TEACHING AND LEARNING ACTIVITIES					
S.No.	Week/Contact Hours	Topic	Mode of Delivery		
1	2 nd week of January 19 (7 to 11)	Introduction - Review of power diodes, transistors, MOSFETS,	Lecture		
	(3 Contact Hours)	IGBTS and I-V characteristics.	C&T / Document		

2	3 rd week of January 19 (14 to 18) (3 Contact Hours)	Review of SCRs, TRIAC, GTO, I-V characteristics and ratings.	viewer / PPT or any suitable mode	
3	4 th week of January 19 (21to 25) (3 Contact Hours)	Protection and gate driver circuits		
4	5 th week of January 19 to 1 st week of Feb. 19 (28.01.19 to 01.02.19) (3 Contact Hours)	Buck converter and Boost converter		
5	2 nd week of Feb. 19 (04 to 08) (3 Contact Hours)	Buck-Boost converter	nergy.	
6	3 rd week of Feb. 19 (11 to 15) (2 Contact Hours + 1 hour Cycle test)	Introduction to inverters Single-phase VSI and Three-phase VSI Assessment – 1	Lecture C&T / Document viewer / PPT or any suitable mode I Cycle Test	
7	4 th week of Feb. 19 to 1 st week of Mar. 19 (25.02.2019 to 01.03.2019) (3 Contact Hours)	Frequency and Voltage control and harmonic reduction in inverters-standard PWM techniques	Lecture C&T / Document viewer / PPT or	
8	2 nd week of March 19 (04 to 08) (3 Contact Hours)	Single-phase and Three-phase CSI	any suitable mode	
9	3 rd week of March 19 (11 to 15) (2 Contact Hours + 1 hour Cycle test)	Single-phase fully and semi controlled converters - continuous and discontinuous current conduction Assessment – 2	Lecture C&T / Document viewer / PPT or any suitable mode	
10	4 th week of March 19 (18 to 22) (3 Contact Hours)	Three-phase fully continuous and discontinuous current conduction and semi controlled converters - continuous current conduction	II Cycle Test	
11	5 th week of March 19 (25 to 29) (3 Contact Hours)	Semi controlled converters discontinuous current conduction, power factor improvement and dual converters	Lecture C&T / Document viewer / PPT or any suitable mode	
12	1 st week of April 19 (01 to 05) (3 Contact Hours)	AC-AC converters-single phase - Phase angle control, on-off control.		
13	2 nd week of April 19 (08 to 12) (3 Contact Hours)	Three-phase AC voltage controller ON-OFF control		

S.No.	Week/Contact Hours	Topic	Mode of Delivery
14	3 rd week of April 19 (15 to 19) (3 Contact Hours)	Single and Three phase cyclo converters	
15	4 th week of April 19 (22 to 26) – CPA	Compensation Assessment (CPA)	Written test
16	1st week of May 19 or date decided by Class committee / Dean office (3 Hours written test)	End Semester Examination	Written test

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	I Cycle test (Written examination)	3 rd week of Feb. 2019	1 Hour	20
2	II Cycle Test (Written examination)	3 rd week of March 2019	1 Hour	20
3	Seminar / case study / design examples /Projects	During the contact hours		20
СРА	Compensation Assessment	4 th week of April 2019	1 Hour	Please refer course policy for more details
4	Final Assessment (End Semester Examination)	1 st week of May 2019	3 Hours	40

COURSE EXIT SURVEY

Feedback from the students during class committee meetings Anonymous feedback through questionnaire

COURSE POLICY

MODE OF CORRESPONDENCE (email/ phone etc)

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail.
- 2. Queries (if required) may be emailed to me / contact me during 4.00 pm to 5.00 pm on Monday and Friday with prior intimation for any clarifications.

COMPENSATION ASSESSMENT

 If any student is not able to attend I and / or II Cycle test(s) due to genuine reasons, student is permitted to attend the compensation assessment (CPA) with 20% weightage (20 marks).

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- > The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION, I	FANY			
FOR APPROVAL				
Course Faculty	CC- Chairperson	Mason	HOD & Smill	7/19