

DEPARTMENT OF ELECTRICAL AND ELECRONICS ENGINEERING

	CO	URSE PLAN PART		
Name of the programme and specialization	B.Tech. – Electrical and Electronics Engineering			
Course Title	ELECTRONIC CIRCUITS LABORATORY			
Course Code	EELR12		No. of Credits	02
Course Code of Pre- requisite subject(s)	EEPC1	4		
Session	January 2019		Section	В
Name of Faculty	Dr. Josephine.R.L		Department	EEE
Official Email	josephinerl@nitt.edu		Telephone No.	9750541213
Name of Course Coordinator(s)	-NA-			
Official E-mail	-NA-		Telephone No.	-NA-
Course Type	1	Core course	Electi	ve course

Syllabus (approved in BoS)

- Frequency analysis of Common Emitter amplifier.
- Measurement of input/output impedence of Common Collector amplifier.
- Design and verification of characteristics of RC Oscillators.
- Design and characterization of Mono stable multi-vibrator.
- Design and characterization of Astable multi-vibrator.
- Characteristics of UJT and applications of UJT oscillator.
- Frequency analysis of FET amplifier.
- Frequency response of series voltage negative feedback amplifier.
- Square waveform generation using transistor based schmitt trigger.
- Design and characterization of Bistable multi-vibrator.

COURSE OBJECTIVES

To familiarize with

- 1. The design and construction of amplifier circuits.
- 2. The design and construction of oscillator circuits.
- 3. The design and construction of multi-vibrator circuits.

	APPING OF COs with POs Course Outcomes	Programme Outcomes (PO)
Jp	on completion of the course, the students will be able to	
1.	Design a complete electronic circuit using a top-down approach which starts from specifications.	1,2,3
2.	Design and analyze electronic circuits using BJT and FET.	1,2,3
3.	Design and characterization of electronic circuits using UJT.	1,2,3
4.	Waveform generator circuit design using electronics.	1,2,3
5.	Prepare the technical report and provide solutions to real time problems	2

COURSE PLAN - PART II

COURSE OVERVIEW

This laboratory course will give a hands-on experience to the students of IV semester in the design of amplifiers, oscillators and multi-vibrator circuits and experimental investigation of the same.

	E TEACHING AND LEARN		Mode of
S.No.	Week/Contact Hours	Topic	Delivery
1.	2 nd week of January '19 (8 and 11)	Instruction and introduction of the Lab Experiments	PPT
2.	3 rd week of January '19 (18 and 22)	Frequency analysis of common emitter amplifier	Practical Experiments
3.	4 th week of January '19 (25 and 29)	Frequency analysis and measurement of input/output impedance of common collector amplifier	Practical Experiments
4.	1 st week of February '19 (4 and 7)	Frequency analysis of FET amplifier	Practical Experiments
5.	2 nd week of February '19 (12 and 15)	Uni Junction Transistor as a Relaxation Oscillator	Practical Experiment
6.	3 rd week of February '19 (19 and 22)	Assessment 2 – Comprehensive Viva	Oral Examinatio

6.	4 th week of February '19 (26 and March 1)	Design neg	and analysis of series gative feedback amplif	voltage ier.	Practical Experiments
7.	1st week of March '19 (5 and 8)	Design and analysis of RC phase shift oscillator.		Practical Experiments	
8.	2 nd week of March '19 (12 and 19)	Design and analysis of Wien Bridge oscillator.		Practical Experiments	
9.	3 rd week of March '19 (22 and 26)	Design and analysis of Astable Multi- vibrator		Practical Experiments	
10.	4 th week of March '19 (28 and April 2)	Design and analysis of Mono stable Multi- vibrator		Practical Experiments	
11.	1st week of April '19 (5 and 9)	Assessment 3 – Comprehensive Viva voce		Oral Examination	
12.	2 nd and 3 rd week of April '19 (12 and 16)	Compensation Lab		Practical Experiments	
13.	4 th week of April '19 Between 23.04.2019 and 26.04.2019	Assessment 4		Practical Experiments	
COUR	SE ASSESSMENT METHO	DDS (shall	range from 4 to 6)		
S.No.			Week/Date	Duration	% Weightag
1.	Assessment - 1 Design calculation Experimentation, Grap Results	n,	During regular lab	session	50
2.	Assessment - 2 Comprehensive viva Cycle 1		3 rd week of Febr	3 rd week of February '19	
3.	Assessment - 3 Comprehensive viva Cycle 2		1 st week and 2 nd we' 19	eek of April	10
	Compensation	ent	2 nd and 3 rd week (12 and 1		

	Assessment - 4* End Semester (Practical Examination)	4 th week of April '19	120 minutes	30
--	--	-----------------------------------	----------------	----

COURSE EXIT SURVEY

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire (Mid of the semester and End of the semester) End Semester feedback on course outcome.

COURSE POLICY (including compensation assessment to be specified)

- 1. All students are advised to check their NITT webmail regularly. All the correspondence (schedule of classes/schedule of assessment/ lab material/ any other information regarding course) will be done through their webmail only.
- The compensation assessment would be conducted at the end of II cycle of experiments.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programme.

ADDITIONAL INFORMATION, IF ANY

- The faculty is available for consultation at times as per the intimation given by the faculty.
- Queries may also be emailed to the faculty directly to josephinerl@nitt.edu

FOR APPROVAL

peoplealal Course Faculty

CC- Chairperson

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in			P.G.	
2018	2017	2016	2015	
35% or (Class		(Peak/3) or (Cla whichever is low		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.