

DEPARTMENT OF ELECTRICAL AND ELECRONICS ENGINEERING

	CO	URSE PLAN PART I		
Name of the programme and specialization	B.Tech	n. – Electrical and El	ectronics Engine	eering
Course Title	ELECT	TRONIC CIRCUITS L	ABORATORY	
Course Code	EELR12		No. of Credits	02
Course Code of Pre- requisite subject(s)	EEPC1	14	ett jesuna sitte	nco, igrae nool
Session	January 2019		Section	Α
Name of Faculty	Dr. N.	Dr. N. Ammasai Gounden Department EEE		EEE
Official Email	amma	s@nitt.edu	Telephone No.	0431-2503253
Name of Course Coordinator(s)	-NA-	axinotosle grau ngi	esta Supho solu.en	ng imuteset/
Official E-mail	-NA-		Telephone No.	-NA-
Course Type	1	Core course	Electi	ve course

- Frequency analysis of Common Emitter amplifier.
- Measurement of input/output impedence of Common Collector amplifier.
- Design and verification of characteristics of RC Oscillators.
- Design and characterization of Mono stable multi-vibrator.
- Design and characterization of Astable multi-vibrator.
- Characteristics of UJT and applications of UJT oscillator.
- Frequency analysis of FET amplifier.
- Frequency response of series voltage negative feedback amplifier.
- Square waveform generation using transistor based schmitt trigger.
- Design and characterization of Bistable multi-vibrator.

COURSE OBJECTIVES

To familiarize with

- 1. The design and construction of amplifier circuits.
- 2. The design and construction of oscillator circuits.
- The design and construction of multi-vibrator circuits.

	Course Outcomes	Programme Outcomes (PO)
Up	on completion of the course, the students will be able to	
1.	Design a complete electronic circuit using a top-down approach which starts from specifications.	1,2,3
2.	Design and analyze electronic circuits using BJT and FET.	1,2,3
3.	Design and characterization of electronic circuits using UJT.	1,2,3
4.	Waveform generator circuit design using electronics.	1,2,3
5.	Prepare the technical report and provide solutions to real time problems	2

COURSE PLAN - PART II

COURSE OVERVIEW

This laboratory course will give a hands-on experience to the students of IV semester in the design of amplifiers, oscillators and multi-vibrator circuits and experimental investigation of the same.

COURS	E TEACHING AND LEARN	NING ACTIVITIES	
S.No.	Week/Contact Hours	Topic	Mode of Delivery
1.	2 nd week of January '19 (7 and 10)	Instruction and introduction of the Lab Experiments	PPT
2.	3 rd week of January '19 (14 and 17)	Frequency analysis of common emitter amplifier	Practical Experiments
3.	4 th week of January '19 (21 and 24)	Frequency analysis and measurement of input/output impedance of common collector amplifier	Practical Experiments
4.	5 th week of January '19 (28 and 31)	Frequency analysis of FET amplifier	Practical Experiments
5.	1st week of February '19 (4 and 7)	Uni Junction Transistor as a Relaxation Oscillator	Practical Experiments
6.	2 nd week of February '19 (11 and 14)	Assessment 2 – Comprehensive Viva voce	Oral Examination

6.	3 rd week of February '19 (18 and 21)	Desig	n and analysis of RC pl oscillator.	hase shift	Practical Experiments
7.	4 th week of February '19 (25 and 28)	Desi	gn and analysis of Wie oscillator.	n Bridge	Practical Experiments
8.	1 st week of March '19 (4 and 7)		n and analysis of serie egative feedback ampl		Practical Experiments
9.	4 th week of March '19 (25 to 28)			Practical Experiments	
10.	1 st week of April '19 (1 and 4)	Desi	gn and analysis of Mon Multi-vibrator	o stable	Practical Experiments
11.	2 nd week of April '19 (8 and 11)	Asses	ssment 3 – Compreher voce	nsive Viva	Oral Examination
12.	3 rd week of April '19 (15 and 18)	d Hisria e	Compensation Lab	rii seal rilla Karle bos Iro	Practical Experiments
13.	4 th week of April '19 Between 23.04.2019 and 26.04.2019	e ange			Practical Experiments
COURS	E ASSESSMENT METHO	DS (shal	I range from 4 to 6)		
S.No.	Mode of Assessme	nt	Week/Date	Duration	% Weightage
1.	Assessment - 1 Design calculation, Experimentation, Graph and Results		During regular lab session		50
2.	Assessment - 2 Comprehensive viva v Cycle 1	Comprehensive viva voce		2 nd week of February '19	
3.	Assessment - 3 Comprehensive viva voce Cycle 2		2 nd week of April '19		10
4.	Assessment - 4* End Semester (Practical Examination)		4 th week of April '19	120 minutes	30

COURSE EXIT SURVEY

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire (Mid of the semester and End of the semester) End Semester feedback on course outcome.

COURSE POLICY (including compensation assessment to be specified)

- All students are advised to check their NITT webmail regularly. All the correspondence (schedule of classes/schedule of assessment/ lab material/ any other information regarding course) will be done through their webmail only.
- 2. The compensation assessment would be conducted at the end of II cycle of experiments.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programme.

ADDITIONAL INFORMATION, IF ANY

- The faculty is available for consultation at times as per the intimation given by the faculty.
- Queries may also be emailed to the faculty directly to ammas@nitt.edu

FOR APPROVAL

Course Escultu

CC- Chairperson

HOD

Page 4 of 5

Guidelines

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				
2018	2017	2016	2015	
35% or (Class average/2) whichever is greater.		(Peak/3) or (Class Average/2) whichever is lower		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.