NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	COURSE PL	AN – PART	<u>II</u>	
Program & Specialization	B.Tech - Electrical and Ele	ctronics Engi	neering	Course Outcomes
Course Title	Control Systems	les.	du 3c de	onno edi hasenshau
Course Code	EEPC 20 No. of Credits 04			
Department	Electrical and Electronics F	Engineering	Faculty	Dr. Vivek Mohan
Session:	July 2018		Section:	3 rd year EEE-A
Pre-requisite Course	MAIR 32	8		
Course Coordinator	- (I), M (F)			
E-mail	vivekmohan@nitt.edu	Telephone	e No.	8113093716
Course Type	✓ Core course	Elective	course	Laboratory course
SYLLABUS (APPRO	OVED BY BOS)			
Modelling of physica Mechanical systems	al systems: Electrical sys – Thermal systems.	tems - Elec	tromechar	nical systems –
	s: Time-domain specific portance- Routh-Hurwit			error series – various
	ue: Definitions - Root lociditions on the root loci.	cus diagram	- Rules to	construct root loci -
Frequency domain ar margin – Nyquist sta	nalysis: Bode plot - Polar bility criterion.	r plot - Nyq	uist plot -	phase-margin - gain
Controller design: De	esign of P, PI, PID, lag, l	lead, lead-la	ag compen	sator design.
ESSENTIAL READI	NGS : Textbooks, referen	nce books, V	Website ad	dresses, journals, etc
Nagrath and Gopal, Benjamin C Kuo an	Modern Control Engineering' 'Control Systems Engineering' d Farid Golnaraghi, 'Automa Systems', Tata McGrawHill	ng', New Age atic Control S	Internation	

COURSE OBJECTIVES

Course Outcomes

To equip students with fundamentals of control systems

COURSE OUTCOMES (CO)

The students will be able to 1)
understand the concepts of closed
loop control systems 2) analyze the
stability of closed loop control
systems 3) apply the techniques to any
electrical systems 4) design the
classical controllers for electrical
systems

Aligned	Programme	Outcomes	(PO)

COs/POs	Coı	arse O	utcom	ies (C	(Os)
		1	2	3	4
	1	M	Н	L	M
	2	M	Н	L	M
08)	3	M	Н	L	M
E)	4	M	Н	L	M
omes	. 5	M	H	L	M
	6	M	H	L	M
utc	7	M	Н	L	M
. 0	8	M	Н	L	M
a	9	M	H	L	M
Program Outcomes (POs)	10	M	Н	L	M
	11	M	Н	L	M
	12	M	Н	L	M
	13	M	Н	L	M
	14	M	Н	L	M

COURSE PLAN - PART II

COURSE OVERVIEW

This is a basic course on control systems involving time domain, frequency domain and stability analyses of systems along with their controller design.

COURSE TEACHING AND LEARNING ACTIVITIES

S. No.	Week	Topic	Mode of Delivery
1.	2 nd Week of July (4hrs)	Introduction to Control Systems with Examples	PPT/Chalk & Talk
2.	3 rd Week of July (4hrs)	Modeling of Physical Systems (Electrical, Mechanical, Thermal)	PPT/Chalk & Talk
3.	4 th Week of July (4hrs)	Intro to Time Domain Analysis, Generalized Error Series and Test Signals	PPT/Chalk & Talk

4.	5 th Week of July (2hrs)	Routh Hurwitz Stability Criterion	PPT/Chalk & Talk	
5.	1 st Week of August (3hrs)	Routh Hurwitz continued + 1 st Cycle Test	PPT/Chalk & Talk	
6.	2 nd Week of August (4hrs)	Root Locus Technique	PPT/Chalk & Talk	
7.	3 rd Week of August (3hrs)	Intro to Frequency Domain Analysis	PPT/Chalk & Talk	
8.	4 th Week of August (3hrs)	Bode Plot	PPT/Chalk & Talk	
9.	5 th Week of August (4hrs)	Bode Plot Continued	PPT/Chalk & Talk	
10.	1 st Week of Sept (4hrs)	Polar and Nyquist Plot	PPT/Chalk & Talk	
11.	2 nd Week of Sept (2hrs)	Polar and Nyquist Plot Continued	PPT/Chalk & Talk	
12.	3 rd Week of Sept (3hrs)	Revision of Frequency Domain Analysis + 2 nd Cycle Test	PPT/Chalk & Talk	
13.	4 th Week of Sept (4hrs)	Intro to Controller Design and PI	PPT/Chalk & Talk	
14.	1 st Week of October (3hrs)	PI and PID continued	PPT/Chalk & Talk	
15.	2 nd Week of October (4hrs)	Compensator Designs	PPT/Chalk & Talk	
16.	3 rd Week of October (3hrs)	Compensator Designs Continued – Lead-Lag	PPT/Chalk & Talk	
17.	4 th Week of October (4hrs)	Numerical Solving/Tutorial/Quiz	PPT/Chalk & Talk	
18.	5 th Week of October (2hrs)	Numerical Solving/Tutorial/Quiz	PPT/Chalk & Talk	
19.	2 nd Week of November (2hrs)	Compensation Test	To Chantel	
20.	3 rd Week of November (2hrs)	End Sem Exam	contact	

S. No.	Mode of Assessment	Week/Date	Duration	% Weightage
l. A flori	First cycle test (1st and 2nd Modules)	1st week of August	1 hour	25%
2.	Second cycle test (3 rd and 4 th Modules)	3 rd Week of September	1 hour	25%
3.	Tutorial/Quiz	Throughout the semester	(3)	10%
	195	Bode Plat	RuguA 70 Ja	
CPA	Compensation test (Full Portions)	2 nd Week of November	1 hour	25%
4.	End Semester Examination	11 th to 22 nd December	3 hours	40%

COURSE EXIT SURVEY

- 1. Students feedback through class committee meetings
- 2. Feedback from students on the course outcomes shall be obtained at the end of the course

COURSE POLICY

COMPENSATION ASSESSMENT: Attending all the assessments (1, 2, 3 & 5) are mandatory for every student. If any student fails to attend the assessment 1 or 2 or both due to genuine reason like medical emergency, the student may be permitted to appear the compensation assessment (CPA) on submission of appropriate documents as proof. The compensation assessment (CPA) will cover full syllabus. CPA is not considered as an improvement test.

ATTENDANCE POLICY: All the students are expected to attend all the contact hours. Students should maintain 75% minimum physical attendance by the end of the course to attend the end semester examination. Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' Grade and will have to REDO the course. A maximum of 10% attendance shall be allowed under On Duty (OD) category. OD is allowed only for the students having minimum attendance of 65%.

ACADEMIC HONESTY & PLAGIARISM: In case of any student found guilty indulging in any mal practice, the student will be awarded no marks in that assessment. If found using mobile phones or any other gadgets for mal-practice during the examination, the answer sheet of the student will not be evaluated and will be awarded ZERO marks.

MODE OF COMMUNICATION: The Faculty is available for consultation during the time intimated to the students then and there. The lecture notes will be given through email of class representative or through the faculty homepage https://sites.google.com/view/vivekmohan/lecture-notes. For correspondence, please contact vivekmohan@nitt.edu.

FOR APPROVAL

For

[Dr. Vivek Mohan, AP/EEE] Course Faculty

Course Coordinator

HoD (Dept. of EEE)