NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

	COURSE PL	AN PART-1			
Name of the programme and specialization	III Year B.Tech, EEE				
Course Title	INTEGRATED CIRCUITS LABORATORY				
Course Code	EELR13	No. of Credits	2		
Course Code of pre- requisite subject(s)	MAIR32	EEPC10	E	EEPC17	
Session	July 2018	Section	A		
Name of the Faculty	Dr. G. Saravana Ilango	Department	Electrical and Electronics Engineering		
Email	gsilango@nitt.edu	Telephone No.	0431-2503259		
Pre-requisite Course	Knowledge on the electronic circuits, circuit theory and mathematics are essential.				
E-mail	gsilango@nitt.edu	Telephone No. 0431-25		0431-2503259	
Course Type	Core course				

Syllabus (approved in BoS)

- Understanding of Op-Amp Imperfections
- Linear Applications of Op-Amp
- Non-Linear Applications of Op-Amp
- Design of Active filters using Op-Amp
- > Analog-to-Digital Conversion
- Digital-to-Analog conversion
- > Timing circuits using 555 Timer
- Combinational and Sequential logic circuits
- Design of Code converter with seven-segment display
- Mini-Project

COURSE OBJECTIVES

The main objective of the course is to give the students an insight into the desing details of the basic linear integrated circuits. The course also equips the students to test and evaluate the various experiments to understand the operation of operational amplifier, Wave generators, Timer, Filter circuits, ADC, DAC.

COURSE OUTCOMES

Upon completion of the course, the students will be able to

- 1. Understand the non-ideal behaviour of Op-amp.
- 2. Analyze and prepare the technical report on the experiments carried out.
- 3. Design application-oriented circuits using Op-amp and 555 timer ICs.
- 4. Create and demonstrate live project using ICs.

COs / POs		Course	e outco	mes (0	COs)
		1	2	3	4
	1	М	Н	Н	М
	2	М	Н	Н	Н
	3	Н	L	Н	Н
OS	4	М	М	М	L
G)	5	NA	NA	NA	NA
me	6	NA	NA	NA	М
Programme Outcomes (POs)	7	M	М	Н	Н
no	8	М	М	М	М
me	9	М	L	L	L
am.	10	M	L	L	М
.ogi	11	NA	NA	NA	NA
<u>م</u>	12	Н	Н	Н	Н
	13	М	Н	Н	Н
	14	М	L	Н	М

Aligned Programme Outcomes (PO)

COURSE PLAN -PART II

COURSE OVERVIEW

A linear integrated circuit (linear IC) is a solid-state <u>analog</u> device characterized by a theoretically infinite number of possible operating states. The linear integrated circuits gained a tremendous growth in most of the application because of the significant advantages like low power consumption, possibility for high speed communication, flexibility, low cost, miniaturization of hardware has led to greater processing standards & higher memory capacities with lesser area & more access speed. Hence it is vital to know about the basic operation of linear integrated circuits.

Thus, the remarkable development and application of integrated circuits in rising technology motivates to frame this course as core course for electrical engineering students. The course is designed such that the initial experiments are to understand the basic operation and imperfections in op-amp ICs. The subsequent experiments are to design and implement various applications of op-amp. Thus on the completion of the course, the students will be able to design and implement several real time applications using op-amp. This course also aims to apply the mathematical skills to a number of practical applications.

S. No.	Week	Topic	Mode of Delivery
1.	III week of July (16 th – 19 th) 1 hr	Introduction to Linear Integrated Circuits	Discussion in class
2.	IV week of July (23 th – 26 th)	Basic operation of op-	Experimental analysis
3.	V week of July & I week of August (30 th – 2 nd)	Imperfections in op-amp	Experimental analysis
4.	II week of August (6 th – 9 th)	Design of Low pass and high pass filter	Experimental analysis
5.	III week of August (13 th – 16 th)	Precision rectifier	Experimental analysis and it will be included in the mini-project
6.	IV week of August (20 th – 23 th)	Assessment - II	Written/Oral viva on experiment – 1 to
7.	V week of August (27 th – 30 th)	Assessment - III	Project demo by students (Simulation)
8.	II and IV weeks of September (6 th – 17 th)	Square and triangular wave generation	Experimental analysis and it will be included in the mini-project
9.	V week of September (20 th – 24 th)	Timing circuits using timer IC555	Experimental analysis and it will be included in the mini-project
10.	V week of September & I week of October (27 th – 1 st)	Digital to analog conversion using IC0808	Experimental analysis and it will be included in the mini-project

S. No.	Week	Topic	Mode of Delivery
11.	II week of October (4 ^{rth} – 8 th)	Analog to digital conversion using IC0809	Experimental analysis and it will be included in the mini-project
12.	III week of October (11 th – 15 th)	Assessment - III	Project demo by students (Hardware)
13.	IV week of October (18 th – 22 nd)	Assessment - IV	Written/Oral viva on experiment – 5 to 8

COURSE ASSESSMENT METHODS

S. No.	Assessment	Type of assessment	Duration	% Weightage
1.	Assessment I	Evaluation of experiment and VIVA on every lab session	Nine sessions	30%
2.	Assessment II	Oral / written viva examination on experiment 1-4	One hour	10%
3.	Assessment III	Mini – project – group activity – simulation, hardware & Report	One session	50%
4.	Assessment IV	Oral / written viva examination on experiment 5-8	One hour	10%

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

- 1. Gayakwad R.A., 'Op-amps & Linear Integrated Circuits', Prentice Hall of India, New Delhi, 4th Edition, 2009.
- 2. Roy Choudhury and Shail Jain, 'Linear Integrated Circuits', 4th Edition, New Age International Publishers, 2010.
- 3. Sergio Franco,' Design with Operational Amplifiers and Analog Integrated Circuits', Tata McGraw Hill, 3rd Edition, 2002.
- 4. Sedra Smith, 'Microelectronic Circuits', Oxford University Press, 6th Edition, 2009.
- 5. R P Jain, 'Modern Digital Electronics', Tata McGraw-Hill Education, 3rd Edition, 2003

COURSE EXIT SURVEY

Feedback from the students during class committee meetings Anonymous feedback through questionnaire

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc)

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail.
- 2. Queries (if required) may be emailed to me / contact me during 4.00 pm to 5.00 pm on Monday and Friday with prior intimation for any clarifications.

COMPENSATION ASSESSMENT POLICY

1. If any student is not able to attend I and / or II Cycle test(s) due to genuine reasons, student is permitted to attend the compensation assessment (CPA) with 20% weightage (20 marks).

ATTENDANCE POLICY

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC HONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMA	TON	
FOR APPROVAL		
Course Faculty	CC-Chairperson	HOD IN