DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

		COURSE PL	AN - P	ARTI		
Course Title	urse Title Power Systems Laboratory					
Course Code	EE608 No. of Credits 02				02	
Pre-requisite subject(s)	Power System Analysis, Transmission and distribution, Switch gear and protection and FACTS					
Session	Jan. 2018 Section (if, applicable)					
Name of Faculty	M Jaya Bharata Reddy Department EEE					
Email	jbreddy@nitt.edu Telephone No. 0431-2503270			0431-2503270		
Name of Course Coordinator(s) (if, applicable)						
E-mail		Core course	Telep	hone No. Elective co		
Course Type	\ \	Core course		_ Elective co	ourse	
Laboratory Experimen	ts					
1. POWER FACTOR CO	ONTRO	LLER (MANUAL	.)			
2. D.C. NETWORK ANA	2. D.C. NETWORK ANALYSER					
3. MEASUREMENT OF	3. MEASUREMENT OF A, B, C, D CONSTANTS OF A TRANSMISSION LINE					
4. MICROPROCESSOR	4. MICROPROCESSOR BASED STATIC VAR COMPENSATOR (SVC)					
5. COMPLETE PROTECTION SCHEME FOR GENERATOR						
6. MICROPROCESSOR BASED THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC)						2)
7. MICROPROCESSOR BASED POWER FACTOR CONTROLLER						
8. STUDY OF POWER TRANSFER THROUGH A SHORT TRANSMISSION LINE						
9. OPERATION OF MICROPROCESSOR BASED NUMERICAL OVER CURRENT RELAY						
10. NUMERICAL DISTANCE PROTECTION RELAY/TESTING OF DIFFERENT TYPES OF RELAYS						OF
ESSENTIAL READINGS Text Books:	s :					
1. DP Kothari and IJ Nagrath, 'Power System Engineering', Tata McGraw-Hill, 2nd Edition.						

2008.

- 2. John. J, Grainger & Stevenson. W.D., 'Power System Analysis', McGraw-Hill, 1st Edition, 2003.
- 3. Hadi Saadat, 'Power System Analysis', Tata McGraw-Hill Education, 2nd Edition, 2002.
- 4. Hingorani, L.Gyugyi, 'Concepts and Technology of Flexible AC Transmission System', IEEE Press New York, 2000 ISBN-078033 4588.
- 5. P. M Anderson, 'Power System Portection', IEEE Press, 2012.

COURSE OBJECTIVES

To understand and analyze different concepts of the power system which includes generation, transmission and distribution through the hardware setup as well as computer simulations.

COURSE OUTCOMES (CO)

Course Outcomes

- Develop computer programs for power system studies.
- 2. Design, simulate and analyze power networks using simulation packages.
- 3. Prepare laboratory reports that clearly communicate experimental information in a logical and scientific manner.

Aligned Programme Outcomes (PO)

CO no.	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
1	Н	Н	Н	M	Н	M	M	M	M	L	L	M	М	L
2	Н	Н	Н	M	Н	M	M	M	M	L	L	M	М	L
3	Н	Н	Н	M	Н	M	M	M	M	L	L	M	M	L

COURSE PLAN - PART II

COURSE OVERVIEW

Power System Lab helps the students to understand and analyze different concepts of the power system through the hardware setup as well as computer simulations.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Contact Hours	Topic	Mode of Delivery
1	Week 1 (6 contact hours)	POWER FACTOR CONTROLLER	Simulation Analysis
		(MANUAL)	Experimental Analysis
2	Week 2 (6 contact hours)		Simulation Analysis
		D.C. NETWORK ANALYSER	Experimental Analysis
3	Week 3	MEASUREMENT OF A, B, C, D	Simulation Analysis

	(6 contact hours)	CONSTANTS OF A TRANSMISSION LINE	Experimental Analysis	
	Week 4	MICROPROCESSOR BASED	Simulation Analysis	
4 (6 contact hours)	STATIC VAR COMPENSATOR (SVC)	Experimental Analysis		
5 Week 5		COMPLETE PROTECTION	Simulation Analysis	
(6 contact hours)	(6 contact hours)	SCHEME FOR GENERATOR	Experimental Analysis	
6 Week 6		MICROPROCESSOR BASED THYRISTOR CONTROLLED	Simulation Analysis	
((6 contact hours)	SERIES CAPACITOR (TCSC)	Experimental Analysis	
7 Week 7 (6 contact hours)	Week 7	MICROPROCESSOR BASED POWER FACTOR CONTROLLER	Simulation Analysis	
			Experimental Analysis	
8 Week 8		STUDY OF POWER TRANSFER	Simulation Analysis	
0	(6 contact hours)	THROUGH A SHORT TRANSMISSION LINE	Experimental Analysis	
9 Week 8		OPERATION OF MICROPROCESSOR BASED	Simulation Analysis	
(6 cont	(6 contact hours)	NUMERICAL OVER CURRENT RELAY	Experimental Analysis	
10	Week 10	NUMERICAL DISTANCE PROTECTION RELAY/TESTING	Simulation Analysis	
	(6 contact hours)	OF DIFFERENT TYPES OF RELAYS	Experimental Analysis	

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	A1 (Continuous Assessment)	1 st to 10 th week	Assessment will be carried out a;long with the course	60
2	A2 Take Home/ Team Task/Mini Project	12 th Week (Work will be carried out along with the course)	60 Minutes	20
3	A3 End Semester Experimentaion (Experimantal/Simulation)	13 th week	120 Minutes	20

Note:

- 1. Attending all the assessments (Assessments 1 to 3) are MANDATORY for every student.
- 2. Students who are absent for regular laboratory sessions have to take steps to REDO the particular experiments by their own efforts and no extra laboratory sessions would be arranged.

COURSE EXIT SURVEY

Shall be obtained at the end of the course.

COURSE POLICY

ATTENDANCE & COMPENSATION ASSESSMENT

- 1. Attendance will be taken by the faculty in all the contact hours. Every student should maintain minimum 75% physical attendance in these contact hours to attend the end semester examination.
- 2. Gradings are assigned as per the institute rules and regulations.

ACADEMIC HONESTY & PLAGIARISM

Copying in any form during assessments is considered as academic dishonesty and will attract suitable penalty.

FOR APPROVAL	/	
amold	the same	3121/2018
Course Faculty	CC-Chairperson	HOD