DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE OUTLINE TEMPLATE

Course Title		ELE	CTR	IC AN	ID HY	BRII) VE	HICLE	S						
Course Code	EE636			No. of Credits			03								
Department	EEE		1	Faculty			C.Nagamani								
Pre-requisites Course Code	Powe			wer (er Conversion Techniques, Electrical Machines										
Course Code Course Coordinator(s) (if, applicable)									3						
Other Course Teacher(s)/Tutor(E-mail	s)				Telephone No.			0431-2503254						111	
Course Type				(Core	cour	se	٧	Elec	ctive	cou	irse			
COURSE OVERVIE	w														
To provide the lectrical and hy COURSE OUTCOM	key co	<i>r</i> ehic	ots ar ular s	nd tool system	s in a	logica	al seq	uence	to ana	alyze	and	unde	rstan	d	
Course Outcomes		Aligned Programme Outcomes (PO)													
Upon completion of the course, the students															
will be able to 1. Understand mathematical models, performance and characteristics of	CO no.	PO 1	PO 2	PO3	PO4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO 11	PO 12	PO 13	PC 14
hybrid and electric vehicles. 2. Analyze the	1.	М	L	NA	NA	L	L	L	Н	Н	L	L	L	L	L
concepts, topologies and power flow control	2	М	L	NA	NA	L	L ·	L	Н	Н	L	L	L	L	L
of electric traction systems.	3	М	L	NA	NA	Н	М	NA	Н	Н	L	L	L	L	L
B. Appraise the configuration and control of various	4	М	L	NA	NA	Н	М	NA	Н	Н	L	L	L	L	L
nybrid electric motor drives. 4. Plan and design appropriate vehicle management system.															

S.No.	Week	Topic	Mode of Delivery		
1	Weeks 1 to 3 (8 contact hours including two contact hours for group work)	History of hybrid and electric vehicles - Social and environmental importance of hybrid and electric vehicles - Impact of modern drive-trains on energy supplies - Basics of vehicle performance - Vehicle power source characterization - Transmission characteristics - Mathematical models to describe vehicle performance.	Lecture/ ppt/video illustration		
2		Examples/ illustration	Group work (exercise)		
3	Weeks 4 to 6 (8 contact hours including two contact hours for group work)	Basic concept of hybrid traction - Introduction to various hybrid drive- train topologies - Power flow control in hybrid drive-train topologies - Fuel efficiency analysis - Basic concepts of electric traction - Introduction to various electric drive-train topologies - Power flow control in hybrid drive-train topologies - Fuel efficiency analysis	Lecture / ppt/ video illustration		
4		Examples/ illustration	Group work (exercise)		
5	Weeks 7 to 9 (8 contact hours, including two contact hours for problem solving)	Introduction to electric components used in hybrid and electric vehicles - Configuration and control of DC motor drives - Configuration and control of Introduction motor drives - Configuration and control of Permanent Magnet motor drives - Configuration and control of Switch Reluctance motor drives - Drive system efficiency	Lecture / ppt/ video illustration		
6		numerical examples/ problem solving	Group work (exercise)		
7	Weeks 10 to 12 (8 contact hours, including two contact hours for group work)	Matching the electric machine and the internal combustion engine (ICE) - Sizing the propulsion motor - Sizing the power electronics - Selecting the energy storage technology – Communications - supporting subsystems.	Lecture / ppt/ video illustration		
8		Examples/ illustration	Group work (exercise)		
9	Weeks 13 to 15 (8 contact hours, including two contact hours for group work)	Introduction to energy management strategies used in hybrid and electric vehicle - Classification of different energy management strategies - Comparison of different energy management strategies - Implementation issues of energy strategies.	Lecture / ppt/ video illustration		
10		numerical examples/ problem solving	Group work (exercise)		

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage		
1	1 st Mid Semester Examination (Written test) (1 st and 2 nd Units)	6 th Week	60 Minutes	20		
2	2 nd Mid Semester Examination (Written test) (3rd and 4 th Units)	12 th Week	60 Minutes	20		
3	Take Home / individual Task	3 rd to 13 th week	Work will be carried out along with the course	10		
4	Retest (Written Test) (1 st to 4 th Unit)	14 th week	60 Minutes	20		
5	End Semester Examination (Written test)	16 th week	180 Minutes	50		

Note:

- 1. Attending all the assessments (Assessment 1-3 and 5) are MANDATORY for every student.
- 2. If any student is not able to attend Assessment-1 (1st Mid Sem) / Assessment-2 (2nd Mid Sem) due to genuine reason, student is permitted to attend the Assessment- 4 (retest) with 20% weightage (20 marks).
- 3. In any case, retest will not be considered as an improvement test.

Reference books

- 1. Husain, Electric and Hybrid Electric Vehicles, CRC Press, 2003
- G. Lechner and H. Naunheimer, Automotive Transmissions: Fundamentals, Selection, Design and Application, Springer, 1999
- Gianfranco, Electric and Hybrid Vehicles: POWER SOURCES, MODELS, SUSTAINABILITY, INFRASTRUCTURE AND THE MARKET, Pistoia Consultant, Rome, Italy, 2010
- M. Ehsani, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2005
- 5. M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd edition, Pearson, 2004

COURSE EXIT SURVEY	*
Shall be obtained at the end of the course	

COURSE POLICY

ATTENDANCE

- Attendance will be taken by the faculty in all the contact hours. Every student should maintain minimum 75 % physical attendance in these contact hours to attend the end semester examination.
- 2. Any student, who fails to maintain 75% attendance need to appear for the retest. Student who scores more than 50 % marks in the retest will be eligible for attending the end semester examination.
- 3. Students not having 75% minimum attendance at the end of the semester and also fail in retest (scoring less than 50%) will have to RE-DO the course.

ACADEMIC HONESTY & PLAGIARISM

 Copying in any form during assessments is considered as academic dishonesty and will attract suitable penalty.

Course Faculty CC-Chaîrperson HOD

Dr. V. San.