DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE PLAN – PART I				
Name of the programme and specialization	M.Tech.			
Course Title	Pattern recognition and Computational intelligence (Elective course)			
Course Code	EC628	No. of Credits	3	
Course Code of Pre- requisite subject(s)	Nil			
Session	January 2021	Section (if, applicable)	Not applicable	
Name of Faculty	Dr.E.S.Gopi	Department	ECE	
Official Email	esgopi@nitt.edu	Telephone No.	9500423313	
Name of Course Coordinator(s) (if, applicable)	Not applicable			
Course Type	Elective course			

Syllabus (approved in BoS)

Polynomial curve fitting — The curse of dimensionality - Decision theory - Information theory - The beta distribution - Dirichlet distribution-Gaussian distribution-The exponent family: Maximum likelihood and sufficient statistics -Non-parametric method: kernel-density estimators - Nearest neighbour methods.

Linear models for regression and classification: Linear basis function models for regression - Bias variance decomposition-Bayesian linear regression-Discriminant functions - Fisher's linear discriminant analysis (LDA) - Principal Component Analysis (PCA) - Probabilistic generative model - Probabilistic discriminative model- Independent Component Analysis (ICA)

Kernel methods: Dual representations-Constructing kernels-Radial basis function networks-Gaussian process-Maximum margin classifier (Support Vector Machine) –Relevance Vector Machines-Kernel-PCA, Kernel-LDA.

Mixture models: K-means clustering - Mixtures of Gaussian - Expectation-Maximization algorithm-Sequential models: Markov model, Hidden-Markov Model (HMM) - Linear Dynamical Systems (LDS).

Neural networks: Feed- forward Network functions-Network training - Error Back propagation - The Hessian Matrix - Regularization in Neural Network - Mixture density networks - Bayesian Neural Networks - Particle swarm optimization-Genetic algorithm-Ant colony optimization-Bacterial foroging-Simulated annealing - Fuzzy logic systems.

COURSE OBJECTIVES

The subject aims to make the students to understand the mathematical approach for pattern recognition and computational intelligence

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
At the end of the course student will be able to, CO1: summarize the various techniques involved in pattern recognition.	PO1
CO2: identify the suitable pattern recognition techniques for the particular applications.	PO1, PO11
CO3: categorize the various pattern recognition techniques into supervised and unsupervised	PO1
CO4: summarize the mixture models based pattern recognition techniques	PO1
CO5: summarize the various computational intelligence techniques for pattern recognition	PO1

PO1: Post graduates of communication engineering programme will demonstrate deep knowledge with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge in telecommunication engineering and the related mathematics

PO11: Post graduates should be capable of self-education and clearly understand the value of achieving perfection by learning by mistakes without depending on external feedback.

COURSE OVERVIEW

The subject aims to make the students to understand the mathematical approach for pattern recognition and computational intelligence. The subject deals with Polynomial curve fitting, Linear and Non-linear model for regression and classification. Kernel methods. Mixture models and Biologically inspired algorithms such as Back propagation Neural network, Particle swarm optimization, etc.

COUR	SE TEACHING AND LE	(Add more rows)		
S. No.	Week	Topic	Mode of Delivery (ONLINE)	
1	1	Linear model for regression and classification. Polynomial curve fitting The curse of dimensionality Decision theory	Lecture using board and slide presentation	

2	2	Information theory The beta distribution Dirichlet distribution Gaussian distribution The exponent family	Lecture using board and slide presentation
3	3	Maximum likelihood and sufficient statistics. Non parametric method: kernel density estimators Nearest neighbor methods	Lecture using board and slide presentation
4	4	Linear basis function models for regression Bias variance decomposition Linear basis function models for regression Bias variance decomposition	Lecture using board and slide presentation
5	5	Bayesian linear regression Discriminant functions.	Lecture using board and slide presentation
6	6	Fisher's linear discriminant analysis (LDA) Principal Component Analysis (PCA) -	Lecture using board and slide presentation
5	7	Probabilistic generative model Probabilistic discriminative model Independent Component Analysis (ICA)	Lecture using board and slide presentation
6	8	Flipped class 1	Think pair share activity, followed by assessment based on Flipped class 1
7	8	Kernel methods: Dual representations Constructing kernels Radial basis function networks Gaussian process Maximum margin classifier (Support Vector Machine)	
8	9	Relevance Vector Machines Kernel PCA, Kernel LDA.	Lecture using board and slide presentation
10	10	Neural networks: Feed forward Network functions Network training	Lecture using board and slide presentation

		Error Hessia	Back propagati n Matrix	ion The		
11	11	Flipped class 2			asse	k pair share ity, followed by ssment based lipped class 2
12	11	Regularization in Neural Network Mixture density networks Bayesian Neural Networks			and	ure using board slide entation
13	12	Mixture models: K-means clustering Mixtures of Gaussian Expectation Maximization Algorithm			Lecture using board and slide presentation	
14	13	Sequential models: Markov model, Hidden Markov Model (HMM) Linear Dynamical Systems (LDS)			and	ure using board slide entation
15	14	Particle swarm optimization Genetic algorithm, Ant colony optimization		Lecture using board and slide presentation		
16	14	Bacterial foraging, Simulated annealing Fuzzy logic systems		and	ure using board slide entation	
COUR	SE ASSESSMENT MET	HODS (s	hall range from 4	to 6)		
S.No.	Mode of Assessm	nent	Week/Date	Durati	on	% Weightage
1	Quiz 1		During 13/2/ to 16/2	1 hour 20%		20%
2.	Quiz 2		During 20/3 to 23/3	1 hour 2		20%
3.	Assessment based on flipped class Min project submission		Contionous assessment	-		30%
СРА	Compensation Asses	ssment*				
5	Quiz 3		During 15/4 to 23/5			20%
6	Final Assessment *		During 24/4 to 14/5			30%
*mand	atory; refer to guidelin	es on pa	ge 4			

COURSE POLICY (including compensation assessment to be specified)

- [1] Copying is strictly not allowed for submitting the project audio slide. However discussion with the peers is allowed.
- [2] The course shall have a final assessment on the entire syllabus with 30% weightage.
- [3] Those who missed either Quiz 1 or Quiz 2 for genuine reason are allowed to write Quiz 3 as the Compensation Assessment. The syllabus for the Quiz 3 is the combination of Quiz 1 and Quiz 2 portions. (Only genuine cases of absence shall be considered).
- [4] The passing minimum and other policy shall be as per the regulations.

ATTENDANCE POLICY((A uniform attendance policy as specified below shall be followed))

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade

ACADEMIC DISHONESTY & PLAGIARISM

- Copying from others during an online assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty.
- > The report shall be submitted to the Academic office

ADDITIONAL INFORMATION, IF ANY

Nil

Interaction through piazza (www.piazza.com) is mostly encouraged.

Essential readings:

- 1. C.M.Bishop,"Pattern recognition and machine learning",Springer,2006
- 2. E.S.Gopi, ""Algorithm collections for Digital signal Processing application using Matlab, Springer ,2007.
- 3. Sergious Thedorodis ,Konstantinos Koutroumbas, Patternrecognition, Elsevier, Fourth edition,2009
- 4.J.I.Tou and R.C.Gonzalez, "Pattern recognition and Machine learning", Addition-Wesley, 1977

5.P.A.Devijer and J.Kittler, ``Pattern recognition-A statistical Approach", Prentice-Hall, 1990				
6.R.Schalkoff, ``Pattern recognition-statistical ,structural and and Neural approaches",- John Wiley, 1992				
7. Recent literature in Pattern recognition and computational intelligence.				
FOR APPROVAL				
	J. France			
Course Faculty 28 CC- Chairperson	HOD			