

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE PLAN – PART I				
Name of the programme and specialization	M.Tech - Communication Systems			
Course Title	FIBER OPTICS AND COMMUNICATION LABORATORY			
Course Code	EC608	No. of Credits	02	
Course Code of Pre- requisite subject(s)	None			
Session	July / January 2021	Section (if, applicable)	A/B	
Name of Faculty	Dr. R. K. JEYACHITRA	Department	Electronics and Communication Engineering	
Official Email	jeyachitra@nitt.edu	Telephone No.	0431 2503320	
Name of Course Coordinator(s) (if, applicable)				
Official E-mail		Telephone No.		
Course Type (please tick appropriately)	Core course	Elective cou	urse	
Syllabus (approved in BoS)				
List of Experiments				

- 1. Measurement of Numerical Aperture
- 2. Measurement of Attenuation and Bending Loss in Multimode Glass Fiber
- 3. Study of BER and Q-factor Measurement
- 4. Characterization of Erbium Doped Fiber Amplifier
- 5. a. Study of Wavelength Division Multiplexing Linksb. Study of Four Wave Mixing Fiber Non-linearity
- 6. Study the Characteristics of AWGN and BSC channels
- 7. Study of Digital Modulation Schemes
 - a. BPSK Modulator and Demodulator
 - b. 16-Quadrature Amplitude Modulator and Demodulator
- 8. Study of Error Control Codes
 - a. Convolutional Encoder and Decoder
 - b. Cyclic Encoder and Decoder
- 9. Study of Path Loss in Wireless Propagation Models

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

10. Study of Rayleigh and Rician Fading channels

11. Orthogonal Frequency Division Multiplexing (OFDM) 802.11a

Reference: LAB Manuals and Supplier manuals are distributed among students.

COURSE OBJECTIVES

- To prepare the students understand the various process and subsystems involved in the optics and communication systems.
- To enable the students, gain the knowledge of different encoding and multiplexing technologies in the fiber optics and wireless communication systems.
- To design optics and communication systems to serve a defined purpose.

MAPPING OF COs with POs				
Co	ourse Outcomes	Programme Outcomes (PO) (Enter Numbers only)		
At	the end of the course student will be able to			
1.	Understand the basic concepts and advancements in fiber optic technology and wireless communication systems	PO1, PO2, PO3, PO5, PO6, PO8, PO9		
2.	Understand the channel characteristics of fiber optics and wireless communication systems and the concept of the optical amplifier	PO1, PO2, PO5, PO10		
3.	Demonstrate the digital modulation schemes and error control coding techniques	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO10		
4.	Interpret the fiber optic and wireless communication system models by using the simulation software	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO10, PO11		
5.	Analyze the operating principle of WDM solutions systems and effect of non-linearity in optical fiber	PO1, PO2, PO5, PO10		

COURSE PLAN – PART II

COURSE OVERVIEW

Students get exposure to the fundamentals and advance level of optical and communication systems. Course includes series of hardware and software experiments which provide handson- experience needed to master the basic concepts and laboratory techniques of fiber optics and communication technologies. Students acqurie the knowledge of enabling modules and models in wireless communication systems. The lab is well equiped with computers, optical simulation softwares (such as OPTSIM and PHOTONICS CAD), communication simulation software (such as COMMSIM and MATLAB) to support strong academic and research activity in the area.

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE TEACHING AND LEARNING ACTIVITIES			(Add more rows)	
S.No.	Week/Contact Hours	Торіс	Mode of Delivery	
1	I WEEK	Instruction class	PPT- Online	
2	II WEEK	Measurement of Numerical Aperture		
3	III WEEK	Measurement of Attenuation and Bending Loss	LAB EXERCISE - ONLINE	
4	IV WEEK	Study of BER and Q-factor Measurement		
5	V WEEK	Characterization of Erbium Doped Fiber Amplifier		
		Study of Wavelength Division		
6	VI WEEK	Multiplexing Links		
Ū		Study of Four Wave Mixing Fiber Non-linearity		
		Study the Characteristics of AWGN		
7	VII WEEK	and BSC channels		
		Study of Digital Modulation Schemes		
		a. BPSK Modulator and		
8	VIII WEEK	Demodulator	LAB EXERCISE -	
		b. 16-Quadrature Amplitude	OINLINE	
		Modulator and Demodulator		
9		Study of Error Control Codes		
	IX WEEK	a. Convolutional Encoder and		
		Decoder		
		b. Cyclic Encoder and Decoder		
10	X WEEK	Study of Rayleigh and Rician Fading channels		
11	XI WEEK	Orthogonal Frequency Division Multiplexing (OFDM) 802.11a		
12	XII WEEK	Compensation Lab Session		
	END SEMES		LAB EXERCISE	

COURSE ASSESSMENT METHODS (shall range from 4 to 6)				
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	LAB PREPAREDNESS	Entire course duration	-	20
2	CONTINUOUS EVALUATION / RECORD	Entire course duration	-	20
3	VIVA VOCE (WRITTEN TEST)	One week prior to the end semester	45 Minutes	30
4	END SEMESTER EVALUATION *	End of semester	120 Minutes	30

*mandatory; refer to guidelines on page 5

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- Feedback from the students during class committee meetings.
- Individual Subject feedback through MIS website at the end of the semester.

COURSE POLICY (including compensation assessment to be specified)

MODE OF CORRESPONDENCE (email/phone etc.)

- 1. All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail only.
- 2. Queries (if required) to the course teacher shall only be emailed to the email id specified by the teacher.

ASSESSMENT

- 1. Attending all the assessments is MANDATORY for every student.
- 2. Finally, every student is expected to score a minimum mark as per the regulations of the institute out of the total assessments (1, 2, 3 and 4) to pass the course. Otherwise the student would be declared fail and 'F' grade will be awarded.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC \geq chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.
- The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

The faculty is available for consultation at times as per the intimation given by the faculty.

FOR APPROVAL

CC-Chairperson HOD **Course Faculty** (Dr R K Jevachitra)

Guidelines:

- a) The number of assessments for any theory course shall range from 4 to 6.
- b) Every theory course shall have a final assessment on the entire syllabus with at least 30% weightage.
- c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.
- d) The passing minimum shall be as per the regulations.

B.Tech. Admitted in				P.G.
2018	2017	2016	2015	
35% or (Class whicheverisg	average/2) reater.	(Peak/3) or (Class Average/2) whichever is lower		40%

- e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses.
- f) Absolute grading policy shall be incorporated if the number of students per course is less than 10.
- g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.