NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

This course outline template acts as a guide for writing your course outline. As every course is different, please feel free to amend the template/ format to suit your requirements.

COURSE OUTLINE TE	MPLATE		
Course Title	BASICS OF VLSI		
Course Code	EC653	No. of Credits	3
Department	ECE	Faculty	R.K.kavitha
Pre-requisites Course Code	None		
Course Coordinator(s) (if, applicable)			
Other Course Teacher(s)/Tutor(s) E-mail	rkkavitha@nitt.edu	Telephone No.	0431-2503322
Course Type	√ Core course	Elective co	ourse
COURSE OVERVIEW			
	ce fundamental concepts an	d various aspe	cts of VLSI
COURSE OBJECTIVE	S		
	rous foundation in MOS and Cl	_	
	•	k speeds and the	e growing challenges of power
consumption and	productivity		
COURSE OUTCOMES	(CO)		
Course Outcomes			Aligned Programme Outcomes (PO)
After successful completo	etion of the course the stude	nts are able	
CO1: Implement the logic	circuits using MOS and CMOS	technology.	PO1 -H
			PO2,PO5-M
			PO3,PO5-L
CO2: Analyze various circuit configurations and their applications			PO1-H PO2,PO3,PO5-M PO4,PO9-L
CO3: Analyse the merits of circuits according to the technology and			PO1,PO2,PO3-H
applications change.			PO4,PO5-M PO5,PO9-L
CO4: Design low power C	MOS VLSI circuits.		PO2,PO3-H PO1,PO4-M PO5,PO7,PO9-L
CO5: Understand the rapi	d advances in CMOS Technolo	ogy	PO2,PO3,PO9-H PO1,PO4,PO5-M PO7-L
			H-High M- Medium L=Low

COUR	COURSE TEACHING AND LEARNING ACTIVITIES				
S.No.	Week	Topic	Mode of Delivery		
1.	3 rd week of August	Family of digital ICs. Speed / power performance of various IC techniques.			
2.	Fourth week of September	MOS transistor structure Nmos & pmos switch concept Compound gates, Pass transistors & Transmission gates Tristate inverters. Multiplexers Latches & Flip flops			
3.	First week of October	Gate layout & Stick diagrams VLSI design flow			
4.	Second week of October	Ideal I-V characteristics of the MOS transistor C-V characteristics. MOS capacitance models			
5.	Third week of October	Non ideal I-V effects (velocity saturation, Sub threshold conduction) CMOS inverter DC characteristics curve Ratioed inverters transfer function Pass transistor DC characteristics	Online Mode through MS Team Plat form		
6.	Fourth week of October	Switch level RC delay models NAND & NOR gates delay estimation Linear delay model Delay in multistage logic networks			
7.	First week of November	Power dissipation. (Static & dynamic) Resistance & capacitance estimation Delay in distributed RC circuits. (L, T & π models)			
8.	Second week of November	Design margins. Hard & soft errors Estimating the logical effort & parasitic delay in Compound gates Hi skew & low skew gates			
9.	Third week of November	Ratioed circuits (Pseudo- nmos) Pre charge & Evaluation mode of operation of dynamic circuits Domino logic, Multiple output domino logic			
10.	Fourth week of November	Differential logic circuits (DCVS, DSL & DCVSPG) Race problems in dynamic logic circuits			
11.	First week of December	Problem solving BiCMOS inverter Comparison of circuit families			

		Problem solving	
12.	2 nd week of December	Integrated resistors & capacitors Integrated resistors & capacitors, Layout design rules Demo on DRC and LVS	Students seminar using PPT
13.	3 rd week of December	Comparison of circuit families Problem solving Seminar on Active and passive inductance Demo on processing techniques Conclusion Planar processes, Design rule checkers & circuit extraction n-well & p-well process	Students seminar using PPT

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Written test (Cycle test 1) (Descriptive type)	First week of November	1 Hour	20 marks (1 ½ units)
2.	Written test (Cycle test 2) (Descriptive type)	last week of November	1 Hour	20 marks (1 ½ units)
3.	Seminar (oral presentation)	November (Four weeks)	30 minutes(per student)	10 marks (2 units)
4.	Written test Problem solving skill test	December second week	1 Hour	20 marks
4.	Written Exam (Descriptive type)	December last week	3 Hours	30 marks (5 units)
	Retest	November first week (If applicable)	1 Hour	20 marks (3 units)

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

Text Books:

- N.H.E.Weste, D. Harris, "CMOS VLSI Design (3/e)", Pearson, 2005.
- ➤ J.Rabey, M. Pedram," Digital Integrated circuits (2/e)", PHI, 2003.

Reference Books:

- Pucknell & Eshraghian, "Basic VLSI Design", (3/e), PHI, 1996.
- Logical Effort: Designing Fast CMOS Circuits, Morgan Kaufmann; First edition ,1999)
- > Recent literature in Basics of VLSI.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

Course feedback is assessed through

- 1. Class committee meeting
- 2. Frequently ask the questions in the class and analyzes the responses
- 3. Course exit survey form

Course Attainment is calculated through

1. Direct tools (Exams and seminars)

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

- 1. The students through class representative may give their feedback at any time which will be duly addressed.
- 2. Feedback from the students through MIS and class committee meetings.

ADDITIONAL COURSE INFORMATION

Any queries send a mail to rkkavitha@nitt.edu

FOR SENATE'S CONSIDERATION