NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE PLAN – PART I				
Course Title	SIGNALS AND SYST	EMS		
Course Code	ECPC10	No. of Credits	04	
Department	ECE	Faculty	Dr. S. Deivalakshmi	
Pre-requisites Course Code		NONE		
Session	August – 2020	Sem/Section (if, applicable)	III - B	
Pre-requisites Course Code		NONE		
Course Coordinator(s) (if, applicable)		•		
E-mail	deiva@nitt.edu	Telephone No.	0431-2503321	
Course Type	Core course	· •	•	

Syllabus (approved in BoS)

Vector spaces. Inner Product spaces. Schwartz inequality. Hilbert spaces. Orthogonal expansions. Bessel's inequality and Parseval's relations.

Continuous-time signals, classifications. Periodic signals. Fourier series representation, Hilbert transform and its properties.

Laplace transforms. Continuous -time systems: LTI system analysis using Laplace and Fourier transforms.

Sampling and reconstruction of band limited signals. Low pass and band pass sampling theorems. Aliasing. Anti-aliasing filter. Practical Sampling-aperture effect.

Discrete-time signals and systems. Z-transform and its properties. Analysis of LSI systems using Z – transform.

COURSE OBJECTIVES

The aim of the course is for

- •Understanding the fundamental characteristics of signals and systems.
- •Understanding the concepts of vector space, inner product space and orthogonal series.
- •Understanding signals and systems in terms of both the time and transform domains, taking advantage of the complementary insights and tools that these different perspectives provide.

•Development of the mathematical skills to solve problems involving convolution, filtering, modulation and sampling.

COURSE OUTCOMES (CO)

COURSE OUTCOMES (CO)

Aligned Programme Outcomes (PO)

At the end of the course students will be able to CO1: apply the knowledge of linear algebra topics like vector space, basis, dimension, inner product, norm and orthogonal basis to signals.	PO1,2		
CO2: Analyse the spectral characteristics of continuous-time periodic and aperiodic signals using Fourier analysis.	PO1,2		
CO3: Classify systems based on their properties and determine the response of LSI system using convolution and analyze system properties based on impulse response and Fourier analysis.	PO 1,2		
CO4: Apply the Laplace transform and Z- transform respectively for the analyse of continuous-time and discrete- time signals and systems.	PO1,2		
CO5: Understand the process of sampling and the effects of under sampling.	PO1,2		
COURSE PLAN – PART II			

COURSE OVERVIEW

Signals and systems are encountered extensively in our day-to-day lives, from making a phone call, listening to a song, editing photos, manipulating audio files, using speech recognition softwares like Siri and Google now, to take EEGs, ECGs and X-Ray images. Each of these involves gathering, storing, transmitting and processing information from the physical world. This course will equip you to deal with these tasks efficiently by learning the basic mathematical framework of signals and systems.

This course will explore the various properties of signals and systems, characterization of Linear Shift Invariant Systems, convolution and Fourier Transform, Laplace Transform, Sampling theorem and Z-Transform. Ideas introduced in this course will serve as a central building block for students interested in further studying information processing in any form such as digital signal processing, analog communication, digital signal processors and Applications, statistical signal processing, spectral analysis of signals and wavelet signal processing. The concepts in this course are useful to students of other disciplines like electrical, instrumentation, mechanical, chemical and other branches of engineering and science.

S.No.	Week	Торіс	Mode of Delivery
Ι	1 st week 4 contact hours	Signals- Definition, Basic Signals, Representation of Signals, Transformation of independent Variables- for both continuous-time and discrete-time signals.	PPT/Digital Writing Board (online)
2	2 nd week 4 contact hours	Classification of signals: Energy signal, power signal, deterministic signal, random signal and periodic signals(both continuous- time and discrete-time signals)	PPT/Digital Writing Board (online)
3	3 rd week 4 contact hours	Vector space, subspace, linear independence, basis and dimension, Inner product, norm, Inner product space, normed space, Cauchy Schwarz inequality, Hilbert spaces.	PPT/Digital Writing Board (online)

COURSE TEACHING AND LEARNING ACTIVITIES

g g
3
5
g
g
ve/both
5
g
5
g
5
5
/both
/both
g
18

		aperture effects.		
13 th week 4 contact hours		Z Transform of discrete time signals. Definition. Properties of Z-Transform.		PPT/Digital Writing Board (online)
13		СРА		Written/Objective/both
14	14 th week 4 contact hours	Region of Convergence, Inverse Z transform (Power series method, Partial Fraction method and contour integration method)		PPT/Digital Writing Board (online)
		method and contour megration method)		Doard (omme)
15	15th week 4 contact hours	Solutions of Linear constant Coefficient difference equations using Z-transform. Analysis of a discrete time LSI system using Z transforms. System function. Causality and BIBO stability Analysis of discrete time LTI system		PPT/Digital Writing Board (online)
	End Semester	Assessment		Written/Objective/both
COUR	SE ASSESSMENT METI			
S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Assessment 1 (Descriptive- written/Objective/both) – Online (Institute Procedure)	1 st week Oct'20	60 mins	20%
2	Assessment 2 (Descriptive- written/Objective/both) – Online (Institute Procedure)	4 th week Oct'20	60 mins	20%
3	3 Assignments / Quiz – Online mode/submission (Institute Procedure)	During regular hours - Online		30%
СРА	Compensation Assessment* (Descriptive-written/ Objective/ both) – Online (Institute Procedure)	3 rd week Nov'20	60 mins	Refer course policy
5	Final End Semester Assessment * (Descriptive- written/Objective/ both) – Institute CBT platform (Institute Procedure)	4 th week Nov'20	120 mins	30 %
ESSEN		books, reference books W	ebsite addresses. id	burnals, etc
Tex 1. 2. 3.	t Books A. V. Oppenheim, A. W S. Haykin and B.VanVe	illsky, S. Hamid Nawab, en "Signals and Systems,	"Signals and Syster, Wiley, 1998.	ems (2/e)", Pearson 2003. ystems, Cambridge, 2007.

- 4. D. C. Lay, "Linear Algebra and its Applications (2/e)", Pearson, 2000.
- 5. K. Huffman & R. Kunz, "Linear Algebra", Prentice -Hall, 1971.
- 6. S. S. Soliman & M. D. Srinath, "Continuous and Discrete Signals and Systems", Prentice-Hall, 1990.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1. The students through class representative may give their feedback at any time which will be duly addressed.
- 2. Feedback from the students through MIS and class committee meetings.

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.) CORRESPONDENCE

1. All the students are advised to come to the class regularly. All the correspondence (schedule of classes/ schedule of assignment/ course material/ any other information regarding this course) will be intimated in the class only.

COMPENSATION ASSESSMENT POLICY

If any student who fails to attend assessment 1 or assessment 2 due to any **genuine reasons**, student is permitted to attend **compensation assessment** for the weightage of 20 % (Including assessment I & assessment 2 Portions)

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ASSESSMENT

- 1. Attending **all the assessments are mandatory** for every student.
- 2. Finally every student is expected to score minimum 1/3 rd of the top rank holder (or ½ of class average) of the class (including all assessments) to pass the course. Otherwise student would be declared fail and 'F' grade will be awarded. Further he can take up only FORMATIVE ASSESSMENT.
- 3. Please refer to B.Tech Regulations 2015 for the letter grades and corresponding grades.

ACADEMIC DISHONESTY & PLAGIARISM

- > Copying from others during an online assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes. THE STUDENTS ARE EXPECTED TO FOLLOW INSTITUTE RULES.

ADDITIONAL COURSE INFORMATION				
The faculty is available for consultation at times as per the intimation given by the faculty.				
FOR SENATE'S CONSIDERATION				
2	P			
O 1 Siras	- Cim			
Tat				
Course Faculty CC-Chairperson	НОЛ			
Course Faculty CC-Chairperson	HOD			