DEPARTMENT OF Electronics and Communication Engineering NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI | NATIONAL IN | STITU | TE OF TECHN | OLO | SY, TIRUCH | IIRAPPALLI | |--|---|--|--------|-------------------|--| | | | COURSE | PLAN | - PART I | | | Name of the programme and specialization | B.Tec | ch (ECE) | | | | | Course Title | VLSI | SYSTEMS | | | | | Course Code | ECPC | 226 | No. | of Credits | 03 | | Course Code of Pre-
requisite subject(s) | Nil | | | | | | Session | Jan 2 | 019 | Sect | ion
pplicable) | Both A & B | | Name of Faculty | Dr. B Venkataramani | | - | artment | ECE | | Email | - | <u>ki@nitt.edu</u>
kii@gmail.com | Tele | phone No. | 7708977953
0431 2503303 | | Name of Course
Coordinator(s)
(if, applicable) | Nil | | | | | | E-mail | NA | | Tele | phone No. | NA | | Course Type | | Core course | | Elective co | urse | | rules. Stick diagram. La Characteristics of MOS technology, multiplexers | gy, VLS
tch up.
S and on
s and n | CMOS switches.
nemory, MOS tran
analysis. CMOS | Implen | nentation of l | MOS circuit fabrication. Layout designogic circuits using MOS and CMO oltage, MOS device design equations on delay of inverters, Pseudo NMOS | Programmable logic devices- antifuse, EPROM and SRAM techniques. Programmable logic cells Programmable inversion and expander logic. Computation of interconnect delay, Techniques for drivin large off-chip capacitors, long lines, Computation of interconnect delays in FPGAs Implementation of PLI EPROM, EEPROM, static and dynamic RAM in CMOS. An overview of the features of advanced FPGAs, IP cores, Softcore processors, Various factor determining the cost of a VLSI, Comparison of ASICs, FPGAs, PDSPs and CBICs. Fault tolerant VLS architectures VLSI testing -need for testing, manufacturing test principles, design strategies for test, chip level an system level test techniques. #### **Text Books** - 1. N. H. E. Weste, D.F. Harris, "CMOS VLSI design", (4/e), Pearson, 2015. - 2. J. Smith, "Application Specific Integrated Circuits, Pearson", 2011. - 3. M.M. Vai, "VLSI design", CRC Press, 2001. ### Reference Books | 1. I dekileli & Eshlagilari, Dasic VESI Designi, Fili, (5/6), 200 | 1. | Pucknell & Eshraghian | n, "Basic VLSI Design", PHI, (3/e), 20 | 03. | |---|----|-----------------------|--|-----| |---|----|-----------------------|--|-----| 2. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley, 2002 ## **COURSE OBJECTIVES** To introduce various aspects of VLSI circuits and their design including testing. ## COURSE OUTCOMES (CO) | Course Outcomes | Aligned Programme
Outcomes (PO) | | |--|--------------------------------------|--| | 1. Describe the techniques used for VLSI fabrication, design of CMOS logic circuits, switches and memory | PO1, PO3, PO4, PO5 | | | 2. Describe the techniques used the design of CMOS logic circuits, switches and memory in VLSI | PO1, PO3, PO4, PO5 | | | 3. Generalize the design techniques and analyze the characteristics of VLSI circuits such as area, speed and power dissipation | PO1, PO2, PO3, PO4,
PO5,PO7, PO12 | | | 4. Explain and compare the architectures for FPGA, PAL and PLDs and evaluate their characteristics such as area, power dissipation and reliability | PO1, PO2, PO3, PO4,
PO5,PO7, PO12 | | | 5. Describe the techniques for fault tolerant VLSI circuits, Explain and compare the techniques for chip level and board level testing | PO1, PO2, PO3, PO4,
PO5,PO7, PO12 | | | Week | Topic | Mode of Delivery | | |-----------------------------|--|--|--| | Week 1 (3 Contact Hours) | VLSI design methodology, VLSI technology- NMOS, CMOS and BICMOS circuit fabrication. | Lecture C&T/ PPT or any suitable mode | | | Week 2 (3 Contact Hours) | Layout design rules. Stick diagram.
Latch up. Characteristics of MOS and
CMOS switches. | | | | Week 3 (3 Contact Hours) | Implementation of logic circuits using MOS and CMOS technology, multiplexers and memory, | | | | Week 4
(3 Contact Hours) | MOS transistors, threshold voltage,
MOS device design equations. MOS
models, small-signal AC analysis. | Process of the Control Contro | | | ASSE | SSMENT I - 10 Marks | Quiz | | | Week 5 (3 Contact Hours) | CMOS inverters, propagation delay of inverters, Pseudo NMOS, Dynamic CMOS logic circuits, power dissipation. | | |---|---|---| | Week 6 | ASSESSMENT II - 20 Mark | Descriptive/Numerical (Written) | | Week 7 (3 Contact Hours) | Programmable logic devices-
antifuse, EPROM and SRAM
techniques. Programmable logic
Cells. | | | Week 8 (3 Contact Hours) | Programmable inversion and expander logic. Computation of interconnect delay, Techniques for driving large off-chip capacitors, long lines, | Lecture
C&T/ PPT or any suitable
mode | | Week 9 (3 Contact Hours) | Computation of interconnect delays in FPGAs Implementation of PLD, | | | ASSE | SSMENT III - 10 Marks | Quiz | | Week 10 (3 Contact Hours) | EPROM, EEPROM, static and dynamic RAM in CMOS. | | | Week 11 (3 Contact Hours) | An overview of the features of advanced FPGAs, IP cores, Soft-core processors | Lecture | | Week 12 | Week 12 Various factors determining the cost of a VLSI, Comparison of | | | (3 Contact Hours) | | mode | | | | | | (3 Contact Hours) Week 13 | ASICs, FPGAs, PDSPs and CBICs . Fault tolerant VLSI architectures | mode | | (3 Contact Hours) Week 13 (3 Contact Hours) Week 14 | ASICs, FPGAs, PDSPs and CBICs . Fault tolerant VLSI architectures VLSI testing -need for testing | Descriptive/Numerical | | COURS | SE ASSESSMENT METHODS (| Week/Date | Duration | % Weightage | |-------|--------------------------|-------------------------------|-------------|-------------| | S.No. | Mode of Assessment | WeekiDate | 60 Minutes | 10 | | 5.NO. | Assessment I (Quiz) | 1st week Feb | 00 | | | 1 | | 3rd Week Feb | 60 Minutes | 20 | | 0 | Assessment II | 3.ª WEEKTED | | 10 | | 2 | HI (Ouiz) | 2 nd Week of March | 60 Minutes | 10 | | 3 | Assessment III (Quiz) | CNAmala | 60 Minutes | 20 | | | Assessment IV | 4th Week of March | 00 Williams | | | 4 | | 1st Week of April | 60 Minutes | 20 | | | Compensation Assessment* | 1St Week of Tapan | | | | 5 | Compensation Assessment | 4th Week of April | 180 Minutes | 40 | | 6 | Final Assessment * | 4 WEER OF TIPM | | | *mandatory; refer to guidelines on page 4 COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed) Feedback from the students after the lectures are over COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified) # MODE OF CORRESPONDENCE (email/ phone etc) Only email ## COMPENSATION ASSESSMENT POLICY Equal weightage for portions from both Assessment II & IV would be included for the compensation assessment # ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed) - At least 75% attendance in each course is mandatory. - A maximum of 10% shall be allowed under On Duty (OD) category. - Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade. ### **ACADEMIC DISHONESTY & PLAGIARISM** - Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty. - > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark. - ➤ The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office. The above policy against academic dishonesty shall be applicable for all the programmes. #### ADDITIONAL INFORMATION Every student is expected to score a minimum of Peak/3 or class average/2 whichever is lower of the maximum mark of the class in the total assessment to pass the course. Otherwise the student would be declared fail and 'F' grade will be awarded. FOR APPROVAL Course Faculty CC-Chairperson ### Guidelines: - a) The number of assessments for a course shall range from 4 to 6. - b) Every course shall have a final assessment on the entire syllabus with at least 30% weightage. - c) One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered. - d) The passing minimum shall be as per the regulations. | B.Tech. Admitted in | | | | | |--|------|--------------------------------------|------|-----| | 2018 | 2017 | 2016 | 2015 | | | 35% or class average/2 whichever is greater. | | Peak/3 or class
whichever is lowe | | 40% | - e) Attendance policy and the policy on academic dishonesty & plagiarism by students are uniform for all the courses. - f) Absolute grading policy shall be incorporated if the number of students per course is less than 10. - g) Necessary care shall be taken to ensure that the course plan is reasonable and is objective.